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a b s t r a c t

Electrodermal activity is characterized by the superposition of what appear to be single distinct skin
conductance responses (SCRs). Classic trough-to-peak analysis of these responses is impeded by their
apparent superposition. A deconvolution approach is proposed, which separates SC data into continuous
signals of tonic and phasic activity. The resulting phasic activity shows a zero baseline, and overlapping
SCRs are represented by predominantly distinct, compact impulses showing an average duration of less
than 2 s. A time integration of the continuous measure of phasic activity is proposed as a straightfor-
ward indicator of event-related sympathetic activity. The quality and benefit of the proposed measure is
demonstrated in an experiment with short interstimulus intervals as well as by means of a simulation
study. The advances compared to previous decomposition methods are discussed.
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. Introduction

Electrodermal activity (EDA) refers to the variation of the elec-
rical properties of the skin in response to sweat secretion. By
pplying a low constant voltage, the change in skin conduc-
ance (SC) can be measured non-invasively (Fowles et al., 1981).
his easy acquisition and the exclusive innervation of the sweat
lands by the sympathetic nervous system contribute to the wide
pplication of SC measures in basic as well as clinical research
Dawson et al., 2007). Sudomotor activity plays a major role in ther-

oregulation (Wenger, 2003) and in keeping the skin flexible for
ensory discrimination (Jänig, 2006), but it is also a concomitant
f the orienting response and more general of emotional arousal
Boucsein, 1992). Clinical application encompasses a variety of
elds, such as the assessment of pain (e.g., Ledowski et al., 2007;
torm, 2008), schizophrenia (e.g., Raine et al., 1999; Yamamoto

nd Hornykiewicz, 2004) or peripheral neuropathy (e.g., Polo et
l., 2000; Torigoe et al., 1999).

The activity of sweat glands is triggered by postganglionic sudo-
otor fibers. Each sweat gland is innervated by many different
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sudomotor fibers (Kennedy et al., 1994; Riedl et al., 1998) and
each sudomotor fiber innervates a skin area of about 1.28 cm2

(Schmelz et al., 1998). The average firing rate of sudomotor fibers
was assessed as 0.62 Hz (Macefield and Wallin, 1996). The temporal
concurrence in the firing of multiple fibers is identified as a nerve
burst in the integrated nerve record; however, single fibers usu-
ally contribute only one single spike to each nerve burst (Macefield
and Wallin, 1996). A sudomotor nerve burst corresponds to an
observable skin conductance response (SCR). The spike density (as
reflected by the amplitude of the nerve burst in the integrated nerve
record) is linearly related to the number of recruited sweat glands
(Freedman et al., 1994; Nishiyama et al., 2001) and to the ampli-
tude of the corresponding SCR (Bini et al., 1980; Lidberg and Wallin,
1981). The SCR amplitude can therefore be considered as an index
of sympathetic activity.

The time series of SC can be characterized by a slowly varying
tonic activity (i.e., skin conductance level; SCL) and a fast vary-
ing phasic activity (i.e., SCRs). SCRs may reflect stimulus-specific
responses or non-specific responses. An SCR shows a steep incline
to the peak and a slow decline to the baseline. The succession of
SCRs usually results in a superposition of subsequent SCRs, as one
SCR arises on top of the declining trail of the preceding one. In

empirical research, it is a common procedure to assess the event-
related activity to a given stimulus or intervention by gauging the
amplitude of the elicited SCRs. The standard peak detection method
(trough-to-peak) defines the SCR amplitude as the difference of the
SC values at its peak and at the preceding trough (Boucsein, 1992;
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delberg, 1967). SCRs which occur in a predefined response win-
ow (typically 1–3 s or 1–5 s after the stimulus) are attributed to
he stimulus (Dawson et al., 2007; Levenson and Edelberg, 1985).
dditionally, a minimum amplitude criterion (e.g., 0.05 �S) is often
pplied.

This scoring technique, however, can be complicated in the case
f closely superposing SCRs. Presuming an additive superposition
f subsequent SCRs, the shape of an SCR could be altered by the
rails of preceding phasic activity (Boucsein, 1992). The degree of
lteration would depend on the amplitude and proximity of pre-
eding SCRs (Grings and Schell, 1969). For standard peak detection,
he non-consideration of the declining trails of preceding activity
s expected to result in an underestimation of the amplitude of
ubsequent SCRs. This methodological effect, which may cause arti-
cial response attenuation, must not be confounded with potential
efractory processes of the sweat gland, which may cause fac-
ual attenuation of later responses. However, experiments applying
ntraneural stimulation do not show significant response attenu-
tion for repeated stimulation (Kunimoto et al., 1992a,b), which
ndicates that refractory processes may not have a strong impact
n SCR amplitude.

The issue of superposing responses motivated the proposal
f several methodological developments aiming at more precise
ssessments of the SCR amplitude. Lim et al. (1997) proposed a
urve-fitting method for the decomposition of 10-s segments of
C data. A four- to eight-parameter model accounts for the SCL,
he slope of preceding phasic activity and the shape of one or two
verlapping SCRs. After the appropriate model is determined by
isual inspection of the respective data segment, the model will
e fitted to the data using a least-squares method. Lim et al. (1997)
eported significant increases of SCR amplitude and latency as com-
ared to the standard trough-to-peak method, and demonstrated
he applicability of the method to settings with short ISIs in stud-
es involving normal adults as well as a patient group (Lim et al.,
999a,b).

Alexander et al. (2005) introduced a decomposition method by
eans of deconvolution. The method is based on the assumption

hat sudomotor nerve activity originally shows peaks (sudomotor
ursts) with short time constants which trigger SCRs exhibiting

arger time constants. The deconvolution of SC data with an appro-
riate impulse response function (IRF; also called transfer function)

s intended to reverse this transformation. The IRF represents the
asic SCR shape that would result from a unit impulse. A Bate-
an function (i.e., a biexponential function) with the parameters

1 = 0.75 s and �2 = 2 s was found to represent an adequate IRF in this
econvolution procedure. Schneider (1987) originally proposed
physiological rationale for the biexponential shape based on a

wo-compartment diffusion process. The resulting driver showed
redominantly distinct impulses2 (i.e., peaks), which could be
xtracted from the signal and used to reconstruct the correspond-
ng SCRs. The scores derived from the reconstructed SCRs were
hown to compare favorably to the trough-to-peak method. Bach
t al. (2009) also assume that one single canonical IRF could rep-
esent the average response shape. A canonical IRF extracted by
eans of PCA over all available participants and trials, and fitted
ith a gamma distribution was found to account for 52% of the
ariance in responses. They propose to employ this IRF in an effi-
ient time-series analysis, which is akin to the common analysis of
vent-related functional resonance imaging data. Since this anal-
sis collapses all data to one score per condition, which comes in

2 Please note that in this manuscript the term impulse refers to a peak or deflection
n the driver function which shows a limited but substantial duration. Hence, it
sually does not refer to the special case of a unit impulse, for which the duration
pproaches zero, unless this is stated explicitly.
oscience Methods 190 (2010) 80–91 81

arbitrary units, differences of this method as compared to previous
measures are not directly testable.

Deconvolution relies on the precondition that there exists a sta-
ble IRF (i.e., SCR shape). Research on differences in SCR rise-time and
recovery-time, however, indicates that the SCR shape shows not
only a significant inter-individual variability but also a significant
intra-individual variability (Breault and Ducharme, 1993; Edelberg
and Muller, 1981; Janes et al., 1985). It can easily be shown that
deviations of the data from a model IRF result in implausible driver
responses (Benedek and Kaernbach, 2010). If the assumed recov-
ery process of the IRF is slow (i.e., the time constant �2 is high),
the driver may become negative for some SCRs. A negative driver,
however, cannot be interpreted in terms of sudomotor activity. On
the other hand, if the recovery process is chosen fast, the decon-
volution analysis results in less compact impulses in the driver
function.

Benedek and Kaernbach (2010) addressed this problem and put
forward the decomposition of SC data by means of nonnegative
deconvolution. This method claims nonnegativity of the driver and
maximal compactness of the impulses. It offers a technique for
the estimation of the tonic activity (i.e., SCL) based on a fit of the
inter-impulse intervals of the driver resulting from standard decon-
volution. Phasic activity can then be extracted by subtracting the
SCL from the SC data. Nonnegative deconvolution, applied to the
phasic SC data, results in two phasic signals, a nonnegative pha-
sic driver and a remainder. The phasic driver is found to exhibit
a zero baseline intermitted by predominantly distinct peaks. The
remainder signal captures all deviations from the standard SCR
shape. These deviations were found to show a specific pattern con-
tingent to the SCR peak. Benedek and Kaernbach hypothesized that
they reflect a pore opening process (Edelberg, 1993). The method
accounts for inter-individual differences in the SCR shape and
selects the most adequate � parameters for the IRF in the course of
an optimization procedure. The average estimate for the IRF shows
a comparable �1 parameter (0.46 s) and a �2 parameter which is
markedly larger (29.06 s) as compared to the parameters used by
Alexander et al. (2005). The slow SCR recovery process revealed by
this method seems to correspond more closely to the sweat dif-
fusion from the skin. With this method, the SCL appears to be a
nearly constant function of time, varying over minutes rather than
seconds. The re-composition of all extracted components results in
a valid reconstruction of the original SC data.

This approach is based on the assumption that variations of the
shape of the SCR are due to pore opening processes occurring in
close temporal vicinity to the SCR peak (Edelberg, 1993). While the
results of this study supported this view, microscopic observations
in parallel to SC recordings would be needed in order to further
corroborate this hypothesis.

2. Aims of the proposed method

Probably the most common reason for assessing SC is to obtain
an indicator of phasic sympathetic activity (i.e., sudomotor nerve
activity; SMNA). Integrated SMNA is usually conceived as a contin-
uous measure reflecting the spike density of relevant sudomotor
neurons and was found to show a stable baseline activity with quite
compact peaks of increased activity (Macefield and Wallin, 1996;
Mano et al., 2006). The continuous signal of integrated SMNA could
be conceived to carry the essential information on sympathetic
activity for any given point in time. SC is thought to basically reflect
SMNA to some extent, but the original signal properties of SMNA are

blurred, presumably amongst other things by the influence of slow
sweat diffusion processes. Therefore, SC no longer shows distinct
peaks of phasic activity, but rather is characterized by the super-
position of extended responses, which eventually complicates the
assessment of responses (Boucsein, 1992).
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Fig. 1. Phasic driver extraction illustrated for a SC data section of 165 s including four trials with pairs of stimuli realizing ISIs of 6, 8, 4 and 2 s (stimulus times are indicated
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y vertical lines). The upper row shows the original SC data. The middle row shows
sed to estimate the tonic part of the driver at 10-s intervals (tonic grid points). Th
art from the driver results in the phasic driver (lower row). The phasic driver show
river for the second stimulus per trial is shaded in black (response window 1–4 s a

There have been different valuable approaches to decompose
C data in order to obtain more precise estimates of SCR ampli-
udes (Alexander et al., 2005; Benedek and Kaernbach, 2010; Lim
t al., 1997), all of them trying to reduce the impact of superposition
ffects and to get a more adequate indicator of sympathetic activ-
ty. The present approach does not focus at a further enhancement
f SCR amplitudes, but aims at establishing a continuous measure
hat reflects more closely the original properties of the underly-
ng SMNA (i.e., continuous signal with stable baseline activity and
ompact peaks of increased activity). The obtained measure should
llow for the computation of straightforward indicators of phasic
esponse magnitude, acknowledging the de facto continuous shape
f apparently discrete single responses.

The proposed method is based on a standard deconvolution
lgorithm. It addresses the problem of the varying SCR shape dif-
erently from the former approach by Benedek and Kaernbach
2010). It is not based on the poral valve model of Edelberg (1993)
nd hence is more parsimonious as to its theoretical assumptions.
he temporal vicinity of the SCR peak is examined in terms of
ateman functions, attributing the variability of the SCR shape
o the trail of the SCR and consigning it to a more variable SCL.
y employing inter-individually adjusted IRFs with short time
onstants combined with a technique for the estimation and sub-
raction of tonic activity, one continuous estimate of phasic activity
s obtained, which is compatible with a stable IRF. The present
pproach abandons the concept of single, discrete responses in
avor of a continuous measure of phasic activity, which is assumed
o be an adequate indicator of sympathetic activity. It allows for
he computation of a straightforward indicator of event-related
ctivity by means of response window integration. The adequacy
f the proposed method is examined on basis of empirical as well
s simulation data.
. Extracting continuous phasic activity: rationale and
rocedure

The extraction procedure basically involves three steps: the
econvolution of SC data and the subsequent estimation of tonic
iver signal which results from deconvolution of the SC data. Inter-impulse data are
ic driver is used to compute the tonic SC (see upper row). Subtraction of the tonic
irtually zero baseline and distinct phasic responses. The time integral of the phasic
imulus onset).

and phasic activity. The procedure is initially performed for a pre-
defined parameter set (e.g., �1 = 0.75, �2 = 2), and a value for the
goodness of the model is determined. In order to increase the good-
ness of the model, the initial parameters will be optimized, which
involves rerunning all three steps for each new parameter set. In the
following, the single steps of the extraction procedure are described
in more detail and exemplified on basis of a sample of SC data
(see Fig. 1). The entire extraction is performed using self-developed
SC analysis software (Ledalab 3.2.2) written in MATLAB, which is
available online (www.ledalab.de).

3.1. Deconvolution of SC data

Sudomotor nerve activity causes sweat secretion and thus trig-
gers a specific change in skin conductivity. In mathematical terms,
sudomotor nerve activity can be considered as a driver, consisting
of a sequence of mostly distinct impulses (i.e., sudomotor nerve
bursts), which trigger a specific impulse response (i.e., SCRs). The
IRF describes the course of the impulse response over time. The
result of this process can be represented by convolution of the
driver with the IRF:

SCphasic = Driverphasic ∗ IRF (1)

Phasic SC activity is assumed to overlie a slowly varying tonic
SC activity (Boucsein, 1992; see Fig. 1, upper row). SC activity thus
can be assumed to be composed as follows:

SC = SCtonic + SCphasic = SCtonic + Driverphasic ∗ IRF (2)

Tonic SC activity can equally be represented as the convolution
of some sort of tonic driver function convoluted with the same IRF.
Although mathematically correct, this procedure is not physiologi-
cally motivated. This is, however, not relevant, because the process

of deconvolution is reversible and we will resort to the convoluted
tonic activity when estimating the phasic activity. SC data can then
be represented by:

SC = (Drivertonic + Driverphasic) ∗ IRF (3)

http://www.ledalab.de/
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Deconvolution reverses the process of convolution. Deconvolu-
ion of SC data results in a driver function which encompasses a
hasic as well as a tonic fraction. If one of them can be estimated,
he other results implicitly:

SC
IRF

= DriverSC = (Drivertonic + Driverphasic) (4)

.2. Estimation of tonic activity

Tonic EDA can be observed in the absence of any phasic activity
Boucsein, 1992). However, SCRs (representing phasic SC activity)
ave a slowly recovering trail which may obscure any tonic SC activ-

ty. For the driver, the time constant of phasic responses is markedly
educed and so is their overlap. Time intervals between distinct
hasic impulses can then be used to estimate tonic activity.

The estimation of the tonic proportion in the driver is performed
imilar as previously described for the method of nonnegative
econvolution (Benedek and Kaernbach, 2010). Convolution can be
onceived as a smoothing operation. Deconvolution has the reverse
ffect and amplifies error noise. Therefore, the resulting driver is
moothed by convolution with a gauss window (� = 200 ms). Then,
eak detection is performed on the smoothed driver by finding
eros in the first time-derivative. A significant peak is detected if
local maximum has a difference of ı ≥ 0.2 �S from its preced-

ng or following local minimum.3 An impulse section is defined by
he local minima preceding and succeeding the significant peak in
ime. All time sections that are not part of detected impulses (inter-
mpulse sections) are considered to reflect the non-overlapped
onic driver. An interpolation procedure is applied in order to
xtend the estimation of the tonic driver to the total time range. To
his end, a time grid of 10-s spacing is defined and the tonic driver
alues at these intermittent time points are estimated by averag-
ng the driver values of available inter-impulse sections within the
ange of one grid spacing before and after the grid points. A cubic
pline fit is used to interpolate the tonic driver based on the grid
ata (see Fig. 1, middle row). Finally, the tonic SC activity is retrieved
y convolution of the tonic driver with the IRF.

.3. Estimation of phasic activity

According to Eq. (4), the phasic driver can now be computed
y subtracting the tonic driver from the total driver signal. This
ubtraction results in a signal, which shows a virtually zero baseline
nd positive deflections (see Fig. 1, lower row), reflecting the time-
onstrained nature of the phasic activity underlying the original SC
ata. In contrast to nonnegative deconvolution, this phasic driver
an take on negative values. These negativities may arise from the
election of a sub-optimal IRF or from artifacts in the recorded SC
ata. They thus give information on the quality of the extraction
lgorithm and of the original SC data. Again, phasic SC data could
e retrieved by convolution of the phasic driver with the IRF. Adding
hasic and tonic SC data perfectly adds up to the original SC data.
.4. Optimization

The most adequate realization of the IRF is unknown and
hought to depend on inter-individual differences in skin charac-

3 As a consequence of the temporal rectification induced by the process of decon-
olution, an SCR with given amplitude will correspond to a response of markedly
igher amplitude in the driver (cf. Fig. 1). The actual relation between amplitudes

n SC data and in the driver depends on the parameters of the IRF as well as on the
pecific shape of the SCR. Therefore, no constant conversion from SCR amplitudes
o driver amplitudes is possible. In general, SCRs with amplitudes lower than the
lassic amplitude criterion of 0.01 �S are found to correspond to driver responses
ith amplitudes of less than 0.2 �S.
oscience Methods 190 (2010) 80–91 83

teristics. Therefore, the initial parameter set is optimized according
to criteria which evaluate the quality of the obtained model. First,
the phasic driver should show distinct, compact impulses with a
short support (i.e., time or sample number with non-zero values)
and approach zero between deflections. As an indicator of indis-
tinctness (indist), the numbers of succeeding samples with values
above a predefined threshold (5% of maximum of phasic driver) are
counted and the result is divided by the sampling rate. These values
represent the length of non-zero sections in seconds. For reasons
of standardization, they are squared, summed and finally divided
by the total duration of the data. This measure comes out in units
of square seconds per second (s2/s) and returns high values when
there are long time sections above threshold. Second, the negativ-
ity of the phasic driver should be as low as possible. The RMS of
the negative proportion of the phasic driver can be considered as
an adequate measure of its negativity (neg). Finally, a compound
criterion c was defined as a weighted sum of both indicators:

c = indist + neg · ˛ (5)

According to the empirical data of the experimental study, com-
parable variance contributions were given, when the negativity
measure was multiplied by a factor of ˛ = 6 s2/(s �S). The solution
is optimized by minimizing the criterion c. Low criterion scores are
obtained for a solution based on a phasic driver featuring a zero
baseline intermitted by short compact impulses. The optimization
is achieved by means of a gradient descent method (e.g., Snyman,
2005), which essentially changes parameters in direction of high-
est criterion improvement until no further significant improvement
can be obtained.

4. Study 1: experiment on variation of the interstimulus
interval

4.1. Methods

4.1.1. Participants
Forty-eight healthy student volunteers (36 females) were

recruited at the Christian-Albrecht University of Kiel by means
of advertisement. Mean age of the participants was 23.5 years
(SD = 6.04). Prior to the experiment, the participants were pre-
sented with single noise bursts of 85, 90 and 95 dB SPL. They were
told that the experiment comprised a series of noise bursts of 95 dB.
After this instruction, participants could decide upon participation.
No participant refused to participate. All participants gave their
written informed consent and were paid for their participation. The
procedure was approved by the ethics committee of the German
Psychological Society.

4.1.2. Equipment and data acquisition
The experiment took place in a soundproof cabin. The stimuli

were presented via a closed Beyerdynamic DT 770 PRO headphone
(Heilbronn, Germany). A 16-channel bioamplifier (Nexus-16; Mind
Media B.V.; Roermond-Herten, The Netherlands) providing 24 Bit
A/D conversion was used for data acquisition. A customer-specific
sensor was used for EDA recording, ensuring the acquisition of
completely raw, unfiltered EDA data. A constant current method
was applied (Boucsein, 1992), using a voltage source of 10 V con-
nected in series with 13.2 M�. Thus, for SC in a typical range of
1 �S or higher the sensor maintained a voltage of less than 0.8 V
between the electrodes. The recorded voltage reflects changes in
skin resistance (SR). SC data was obtained by computing the recip-

rocal of SR. The two flat Ag–AgCl electrodes of 10 mm diameter
were placed at the medial phalanges of the digits III and IV of
the non-dominant hand. According to common recommendations
(Fowles et al., 1981), the electrodes were prepared with an isotonic
paste (EC33, Grass Technologies). SC data was sampled at 32 Hz. As
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art of a standard routine, blood volume pulse was recorded via a
hotoplethysmograph placed on digit II of the non-dominant hand
sampled at 128 Hz), respiration was assessed via a respiration belt
laced on the chest (sampled at 32 Hz) and EMG was recorded at
he musculus orbicularis oculi (sampled at 2048 Hz). The data of
hese additional sensors, however, were not analyzed.

.1.3. Experimental task and procedure
After a rest period of 1 min the participants were presented with

series of noise bursts (white noise, 95 dB SPL, 120 ms total dura-
ion with 20 ms linear ramps). The stimuli were grouped into three
locks of four trials. One trial consisted of two noise bursts exhibit-

ng an interstimulus interval (ISI) of 2, 4, 6, or 8 s. Each ISI was
ealized exactly once within each block. The ISIs within each block
ere randomized with the only condition that the first ISI of each

lock was not the same as the last of the preceding block, thus
nsuring that two consecutive ISIs were different from each other
or the whole sequence. The inter-trial interval was 40 s.

Participants were seated in a chair with a neck-rest, with their
on-dominant forearm placed on a soft armrest. After attach-
ent of the physiological sensors, the participants were asked to

nd a comfortable position and to avoid any unnecessary move-
ent during the experiment. During the experimental session, the

xperimenter sat outside of the cabin and monitored the stimulus
resentation and the recorded physiological data. The experiment
ook about 30 min in total.

.1.4. Analysis of general response characteristics
Let us first consider typical characteristics of single SCRs as

epresented in the phasic driver. While such an analysis is not
equired for most experimental questions related to electroder-
al activity, its result may be interesting for understanding the

elation between the phasic driver and its neural correlate. The
ypical phasic driver response was usually represented by a sin-
le distinct impulse in the phasic driver signal. The computation of
esponse characteristics referred to the dominant impulse within
five seconds interval following stimulus onset. To this end, the

ata within this 5 s time interval was smoothed by convolution
ith a gauss window (� = 200 ms) and the maximal response within

his time window was identified by means of standard peak detec-
ion. The impulse section was then defined as the time between the
ocal minima preceding and succeeding the peak with the maximal
mplitude. The identified maximum and the length of the impulse
ection already represent coarse estimates of impulse latency and
uration. In order to allow for more robust estimates, which con-
ider the entire course of the impulse, the impulse latency and
uration were estimated by means of the first and second moment
f the impulse section. The calculation of the moments for distinct
istributions P(x) was defined as follows (Papoulis and Pillai, 2002):

n (a) = ˙(x − a)n P(x) (6)

The first moment about zero �1(0) equals the expected value or
ean and is usually simply denoted �′

1 or �; the second moment
round the mean �2 = �2(�) is equal to the variance and is usually
imply denoted �2. Hereby, �′

1 is a robust measure of the response
atency which rather refers to its peak time than to the onset time.
he variance �2 can be considered as a robust measure of response
xtension. The response duration d thus can be estimated by taking
our standard deviations (i.e., square root of the variance �2):

= 4 · √
�2 (7)
.1.5. Scoring of the response magnitude
A major advantage of the extraction of a continuous measure

f phasic activity (the phasic driver) is the possibility of using a
ime integral of this continuous measure over the entire response
oscience Methods 190 (2010) 80–91

window instead of relying on the detection of distinct peaks. The
phasic driver time integral reflects the cumulative phasic activity,
underlying SC data, within a specified response window (compare
Fig. 1, lower row). This measure could thus be labeled integrated
skin conductance response (ISCR). As the phasic driver shows a
zero baseline, the computation of the ISCR simply involves the
integration (i.e., area under the curve) of the phasic driver signal
over a specified response window. The ISCR then is given in the
unit of �S s. This scoring method is straightforward. It does not
only decrease biases due to superposing SCRs, but it also considers
the continuous shape of phasic responses, and circumvents tricky
issues such as the localization of local minima and maxima. It is the
method that we propose for the scoring of the response magnitude
in skin conductance data.

For reasons of better comparability with the classic trough-to-
peak analysis (CTTP; i.e., peak detection) the data were in addition
analyzed with what could be called “improved trough-to-peak
analysis” (ITTP). For this analysis, the phasic SC data were recon-
structed from the phasic driver, taking into account only the driver
within the predefined response window. This part of the driver
data was convoluted with the IRF, thus restoring the phasic SC data
resulting from within the response window. The reconstructed sig-
nal is comparable to the original signal except that it is rid of any
tonic activity and of the influence of SCRs occurring before or after
the response window. The reconstructed signal starts at 0 �S and
the amplitude could therefore be assessed by taking the signal’s
maximum. The ITTP can be assumed to co-vary closely with the
actually proposed ISCR measure, since both are derived from the
continuous phasic driver signal and restricted to that part of the
driver that lies within the response window. ITTP uses the same
assessment principle and scaling as CTTP and it is, therefore, better
suited for direct comparisons of the methods. For CTTP, the ampli-
tude was assessed by the sum of amplitudes of all SCRs with onset
(defined by a local minimum) within the response window.

The response window was defined to range from 1 to 4 s after the
stimulus and the minimum amplitude criterion was set to 0.05 �S.

4.1.6. Statistical analysis
In order to account for the positively skewed distributions of

SCR amplitudes, all scores were standardized with the formula
y = log(1 + x) (Venables and Christie, 1980). The same standardiza-
tion procedure was applied to displayed raw data, before averaging
across participants. For raw phasic driver data, the procedure was
adapted to y = log(1 + |x|)*sign(x), in order to account for the pos-
sibility of negative values. The respective units were labeled with
log �S.

For ANOVA analyses, degrees of freedom were corrected by
means of the Greenhouse-Geisser method where appropriate and
Bonferroni post hoc tests were used for pair-wise comparison of
means.

4.2. Results

4.2.1. Phasic driver extraction
Phasic driver extraction was automatically processed for all

data. The optimization of � parameters was performed for six dif-
ferent sets of initial values (all possible combinations of �1 = 0.75 or
1.5 s and �2 = 2, 4, or 6 s), which reliably converged toward a com-
mon solution as indicated by good absolute agreement of optimized
�-values (ICC(3,1) = .70 for �1 and ICC(3,1) = .78 for �2, respectively).
For each data set, the solution with the overall lowest model error

was kept. The optimized values ranged from 0.24 to 2.56 for �1
and from 0.73 to 7.80 for �2; the average optimized parameters
were �1 = 0.96, and �2 = 3.76 (SD = 0.56 and 1.88, respectively). The
average negativity score (before adjustment of variance, see meth-
ods section) was 0.05 �S (SD = 0.03) and the average indistinctness
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ig. 2. Event-related responses to stimulus pairs (trials) with an interstimulus inte
veraged phasic driver and the averaged SC data (* after subtraction of the minimu
ide, the 50 most powerful responses are depicted for each ISI condition. Stimulus o

as 0.39 s2/s (SD = 0.21). A further examination of the distribution
f the phasic driver showed that 75% of the data ranged between
0.20 �S, while the phasic driver maximum was on average 6.50

SD = 3.37). These distribution characteristics appear typical for
signal which predominantly varies around a zero baseline but

hows some large deflections. The variability of the tonic activity
as assessed by averaging the tonic activity for intervals of ten sec-

nds and computing the mean absolute difference of succeeding
ime intervals (Benedek and Kaernbach, 2010). The tonic activity
howed a mean variation of 0.11 �S (SD = 0.06) per 10 s.
.2.2. Event-related activation
Fig. 2 displays the electrodermal response to the experimental

rials with varying ISI (2, 4, 6, and 8 s). For the averaged SC data, the
CRs to the two stimuli were highly overlapped for all ISI conditions.

ig. 3. Event-related average phasic driver response for 0–5 s after stimulus onset (avera
�′

1) and variance (�2) of the underlying single phasic driver responses (N = 576; right sid
f 8, 6, 4 and 2 s are depicted in rows one to four, respectively. On the left side, the
hin the respective trial) are displayed for the respective ISI condition. On the right
atencies are indicated by vertical lines.

For an ISI of only 2 s, both responses were merged so closely that
the latter did no longer show a local minimum and thus no distinct
peak in the averaged SC data. For the average phasic driver, how-
ever, both responses were discriminable at all ISI conditions as they
featured distinct peaks. While for an ISI of only 2 s, responses of the
phasic driver were visibly overlapped, these responses appeared to
be clearly non-overlapped for ISIs of 6 or 8 s. The depiction of non-
averaged single sequences of phasic driver data (Fig. 2, on the right)
illustrates the characteristics of the raw driver data underlying the
averaged phasic driver. The single phasic driver responses occurred

largely contingent on the ISI condition. However, the considera-
tion of raw driver data also disclosed the typical variability of onset
latency and duration of single responses. This variability appeared
to be constrained by the fact that the response onset was typically
found no earlier than about one second after stimulus onset.

ged over all stimuli of trials with ISIs of 6 or 8 s; left side), and distribution of mean
e).
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Fig. 4. The effect of different ISIs ranging from 2 to 8 s on the magnitude of the SCR
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.2.3. Analysis of general response characteristics
In the following, the characteristics of the phasic driver response

i.e., event-related driver impulses) will be examined in more detail.
his analysis referred to both single stimuli of trials with an ISI of
or 8 s (50% of all stimuli), since inspection of Fig. 2 suggested

hat for these ISI conditions phasic responses were not overlapped.
he average phasic driver response relative to stimulus onset is
epicted in Fig. 3 (left side) together with the distribution of �′

1
i.e., impulse mean, reflecting the impulse peak latency) and �2
i.e., impulse variance, reflecting the impulse extension). The aver-
ge driver response showed a steep incline starting at 0.87 s and
somewhat less steep decline ending at 4.44 s as determined by
etection of local minima in the averaged response function. The
verage impulse mean was 2.30 s (Mdn = 2.23, SD = 0.48) and the
verage impulse variance was 0.25 s2 (Mdn = 0.21; SD = 0.09). Due
o the skewed distribution of �2 (see Fig. 3), the median appears to
e a more meaningful estimator of the average variance. The aver-
ge impulse duration estimated according to Eq. (7) and based on
he median of impulse variance was 1.85 s (SD = 0.32). Assuming
symmetrical shape of the impulse, the average impulse had an

nset latency of 1.38 s and an offset latency of 3.23 s after stimulus
nset.

Considering the average driver value at the zero-latency
0.08 log �S) as a baseline value that could be subtracted from the
veraged driver response, the first five single-second intervals of
he averaged driver signal encompassed 0.0, 30.5, 43.4, 18.0 and
.1% of the total driver response area within this time range after
timulus onset. The 3-s time interval of 1–4 s after stimulus onset
hus captured almost 92% of the response.

.2.4. Comparison to the classic trough-to-peak method
The effect of the four ISI conditions on the SCR amplitude of the

econd stimulus of each trial was examined by means of an ANOVA
sing the within-subject factor ISI (2, 4, 6 and 8 s) and the within-
ubject factor method (CTTP vs. ITTP). The integrated measure ISCR
as not directly comparable to CTTP and ITTP as it comes in differ-

nt units. It was therefore analyzed in a separate analysis. The data
f six participants (12.5%) did not show any significant SCRs and
hus were excluded from further analysis. The ANOVA returned a
ignificant main effect for method (F[1,47] = 98.90, p < .001, �2 = .68,
= 1) indicating that SCR amplitudes are lower by 49% when
ssessed using CTTP (M = 0.16 log �S, SD = 0.15) as compared to the
TTP (M = 0.32 log �S, SD = 0.24; see Fig. 4). The analysis also yielded
significant main effect ISI (F[3,141] = 7.17, p < .001, �2 = .13, ε = .81)
nd a significant interaction (method*ISI: F[3,141] = 18.95, p < .001,
2 = .29, ε = .82). Post hoc tests revealed that, for the CTTP method,
he SCR amplitude was significantly lower for an ISI of 2 s (M = 0.06
og �S, SD = 0.11, p < .001) and tended to be lower for an ISI of 4 s
M = 0.17 log �S, SD = 0.17, p = .15) as compared to ISIs of 6 or 8 s
M = 0.21 log �S, SD = 0.15), but did not depend on ISI for ITTP. The
elative difference of the assessed amplitude for CTTP as compared
o ITTP was −82% for an ISI of 2, −42% for an ISI of 4 and −35%
or ISIs of 6 or 8 s, respectively. A separate ANOVA for ISCR again
evealed that responses according to this score did not differ for
he ISI conditions (M = 0.92 log �S s, SD = 0.51; F[3,141] = 1.44, ns.,
2 = .03, ε = .91; see Fig. 4). Inspection of Fig. 4 also indicates that
he ISCR shows a lower standard error of mean as compared to the
ther scores. This suggests that for this integration measure the
rror variance is reduced.

A complementary analysis considered the relative frequency of
o-response trials (i.e., trials for which no SCR met the minimum

mplitude criterion in the response window relative to the sec-
nd stimulus) depending on ISI. For CTTP, non-significant responses
ere obtained in 64, 33, 5 and 7% of the trials with an ISI of 2, 4, 6

nd 8 s, respectively. For ITTP, this frequency was below 7% for all
SI conditions.
amplitude for classic trough-to-peak (CTTP) as compared to the improved trough-
to-peak (ITTP), and compared to the integrated skin conductance response (ISCR).
Note, that ISCR uses different units and scaling as indicated by the ordinate on the
right side.

4.3. Discussion

The phasic driver derived from the experimental data shows a
virtual-zero baseline with burst-like phasic responses, as indicated
by the data distribution characteristics and by low values of the neg-
ativity and the indistinctness criteria. Inter-individual differences
in the typical shape of SCRs are accounted for by the selection of an
inter-individually optimized IRF (i.e., optimized � parameters). The
shape parameters show a considerable variability across partici-
pants and could reliably be assessed. It is assumed that these shape
parameters display stable inter-individual characteristics. A retest
analysis would, however, be helpful to examine this assumption.

The event-related analysis of the phasic driver reveals a well-
defined response characteristic (see Figs. 2 and 3). Single responses
show an average impulse peak latency of 2.30 s after stimulus onset
and average impulse duration of less than 2 s. In spite of a consider-
able variability of single phasic responses, they almost never occur
earlier than about one second after stimulus onset. This virtual hard
limit is a typical characteristic of all reaction time measures and
reflects the minimal time needed for preceding psychophysiolog-
ical processes such as stimulus processing, nerve conduction time
and neuroeffector transfer time (Lim et al., 2003). It results in the
positively skewed distribution of the peak latencies and contributes
to the skewed shape of the averaged phasic driver response. The
onset latency of the average phasic driver response is 0.87 s after
stimulus onset, which should represent the overall lower limit of
response onset latencies. The data smoothing, which was neces-
sary in the course of deconvolution, will have exerted some bias on
this onset latency. By addition of twice the standard deviation of
the smoothing window (for a Gauss window with � = 200 ms this
corresponds to 400 ms) physiological realities should be met more
closely. The resulting onset latency of close to 1.3 s is in line with
previous estimates of the onset latency (Lim et al., 2003).

Inspection of the average phasic driver response (Figs. 2 and 3)
reveals that the phasic response does not immediately fully return
to the pre-trial baseline after a response. The pre-trial baseline is
lower than 0.1 �S and is supposed to represent the average result

of spontaneous activity. The phasic driver level attained directly
after a response is somewhat higher. This may have two different
reasons. First, it may reflect the increased average activity due to
an enhanced excitability directly after a stressing stimulus such as
a noise burst. Second, it may also reflect a residual of the overshoot



f Neur

w
u
2
a
t

a
w
i
w
v
c
s
s
t
h
d
a
b
e

r
m
s
t
o
t
t
t
f
e

s
d
s
l
t
a
g
a
S
t
b
w
e
s
r
i
s
w
I
b
d
d
b
a
r
t
h
p

c
a
c
t
S

M. Benedek, C. Kaernbach / Journal o

hich is associated with the deconvolution of SC data by an IRF
sing short time constants (see Fig. 2 in Benedek and Kaernbach,
010). The latter effect, however, was accounted for by using an
dequate (inter-individually optimized) IRF and by estimation of
he tonic activity at shorter time intervals.

The averaged phasic driver response shows a second minimum
t 4.44 s marking the overall upper limit of the response offset. If
e want to define a response window for phasic responses accord-

ng to this phasic driver extraction, an inclusive response window
ould range from 0.8 to 4.5 s after stimulus onset. A more conser-

ative response window, ranging from 1 to 4 s after stimulus onset,
an still be considered to capture the essential response. For longer
timuli the definition of the response window has to consider the
timulus duration. While the lower limit refers to stimulus onset,
he upper limit actually has to refer to stimulus offset and thus will
ave to be extended accordingly. In the case of variable stimulus
uration, resulting in variable response windows, it would be advis-
ble to divide the response window integral of the phasic driver
y the duration of the response window. The ISCR would then be
xpressed in the unit of �S.

The observed response range is compatible with the common
ecommendations for response windows for the trough-to-peak
ethod, which typically range from 1 to 3 s up to 1 to 5 s after the

timulus (Dawson et al., 2007; Levenson and Edelberg, 1985). It has
o be kept in mind, however, that these windows aim at capturing
nly the onset of elicited SCRs, while the response range defined for
he phasic driver response captures the entire response from onset
o offset. The compact response range of less than four seconds,
aken together with the low susceptibility to typical bias errors
or short inter-SCR latencies, represent desirable preconditions for
xperimental paradigms involving short ISIs.

The event-related SCR amplitude was compared for the clas-
ic trough-to-peak method and two measures based on phasic
river extraction (improved trough-to-peak method and integrated
kin conductance response). The CTTP method results in overall
ower SCR amplitudes than the ITTP following phasic driver extrac-
ion. This is in line with previous evidence using decomposition
pproaches (Lim et al., 1997; Benedek and Kaernbach, 2010), sug-
esting that decomposition of SC data successfully reduces the
ssumed underestimation bias caused by close superposition of
CRs. Moreover, the CTTP method yields especially low SCR ampli-
udes for an ISI of 2, but also for an ISI of 4 s. This effect could
e attributed to physiological or psychological recovery processes,
hich might attenuate responses coming in brief succession. How-

ver, ITTP did not result in especially low SCR amplitudes for these
hort ISI conditions. This suggests that the impact of physiological
ecovery processes or habituation might not have been paramount
n this stimulation sequence. In this context, Baltissen et al. (1989)
howed that lower SCR amplitudes for lower ISIs are only found
hen it was possible to anticipate a stimulus to come after short

SI (e.g., in a regularly alternating sequence of short and long ISIs)
ut not if the ISI was randomized. This result also conforms to evi-
ence from studies using intraneural stimulation, which usually
o not find lower SCR amplitudes for higher stimulation frequency
ut in some cases even find response potentiation (Kunimoto et
l., 1992a,b). The differences observed by CTTP, therefore, could
ather be attributed to an underestimation bias involved in trough-
o-peak assessment of SCR amplitudes. This bias is expected to be
ighest for the shortest ISI condition, for which the trail of the
receding SCR should be steepest at the time of the following SCR.

Considering that the ISI condition of 2 s resulted in an espe-

ially high percentage of trials without any significant SCR for CTTP,
nother explanation should also be taken into account: the very
lose superposition of two SCRs might obscure the onset of the lat-
er (i.e., the second SCR within the trial). Employing CTTP, the two
CRs then might appear as one, which would result in a misclas-
oscience Methods 190 (2010) 80–91 87

sification of the second SCR with respect to the response window.
Very close superposition of SCRs thus might result in underesti-
mation bias for CTTP in two ways. First, the SCR amplitude may be
underestimated by the ignorance of the declining remainder of pre-
ceding responses. Second, an SCR may be entirely misclassified with
respect to the response window, when its onset was obscured by
preceding responses. The following simulation study was designed
to examine the potential impact of biases caused by these types of
superposition effects.

5. Study 2: simulation on the variation of the inter-SCR
interval

5.1. Methods

A simulation was set up, simulating the superposition of SCRs at
varying inter-SCR latencies and comparing the effects on the SCR
amplitude for scores assessed with classic trough-to-peak analy-
sis (CTTP) as compared to improved trough-to-peak (ITTP) analysis
after phasic driver extraction. The simulated SC data considered a
time interval of 30 s (−10 to +20 s) and consisted of a tonic baseline
activity which was superposed by an SCR with fixed position in time
and by a second SCR with variable position. The baseline SC data was
represented by a linear function declining by −0.02 �S/s (approxi-
mating the typical characteristic of slowly declining SC data in the
absence of phasic activity). It was assumed that a stimulus at t = 0
evoked an elicited SCR which could be represented by a phasic driver
response with a peak latency of 2.3 s and an impulse duration of
1.8 s. The IRF was set to �1 = 1, �2 = 4. These characteristics represent
the average phasic response to a noise burst (see results section on
event-related activity). For reasons of simplicity, the amplitude of
this elicited SCR was set to 1 �S. Given the declining baseline and
the predefined response characteristics, CTTP detected the onset
of the (non-superposed) elicited SCR at 1.53 s. The baseline and
the elicited SCR represent the default data which were kept fixed
throughout the simulation. This default setting was complemented
by a biasing SCR. This biasing SCR showed identical SCR characteris-
tics as the elicited SCR except for the onset latency. The time-lag of
the onset latency of the biasing SCR to the elicited SCR ranged from
−6 s (i.e., the biasing SCR preceded the elicited SCR by 6 s) to +6 s
(i.e., the biasing SCR followed the elicited SCR by 6 s). The variation
of the time-lag was performed for steps of 0.1 s, which resulted in
121 different data scenarios. For every scenario, the SCR amplitude
was assessed in a typical response window of 1–4 s after (virtual)
stimulus onset (Dawson et al., 2007).

5.2. Results

The simulation study simulated the existence of one elicited SCR
which was superposed by a biasing SCR with an onset time-lag
varying from −6 to +6 s. As illustrated in Fig. 5, the biasing SCR had
a significant influence on the SCR amplitude estimated within the
response window. Considering CTTP, four different biasing condi-
tions could be distinguished. First, if the biasing SCR preceded the
elicited SCR by more than about 3 s both SCRs had distinct onsets
as defined by local minima. However, the amplitude of the elicited
SCR was underestimated by up to 43% due to non-consideration
of the steep decline of the SC data, which was primarily affected
by the trail of the preceding SCR. Second, if the biasing SCR pre-
ceded the elicited SCR by less than three but more than about

half a second only one conjoint minimum was detected (i.e., both
SCRs appeared as one). Since this conjoint onset was located pre-
vious to the response window, the assessed amplitude was zero.
This condition reflects full underestimation of the event-related
response due to a closely preceding biasing SCR. Third, if the SCR
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ig. 5. Simulation of the amplitude of a fixed SCR, which becomes biased by a seco
second row) are displayed for −6, 3, 0, +3, and +6 s; the gray box represents the r
epicted dependent on the SCR offset for the classic trough-to-peak method (CTTP)
art of figure).

ime-lag ranged from about minus half a second to about three sec-
nds the superposing SCRs again exhibited only one conjoint local
inimum which now resided within the response window. The

ssessed amplitude (close to 2 �S) represented the amplitudes of
oth SCRs, attenuated by non-consideration of the declining base-

ine and the superposition of both SCRs. As a special case, for a
ime-lag of more than 2.5 s and less than about three seconds, the
nset of the biasing SCR would actually be outside of the response
indow. The high amplitude scores in this case thus represented a

onsiderable overestimation of the event-related amplitude. Forth,
f the biasing SCR follows the elicited SCR by more than three sec-
nds, both SCR showed distinct onsets defined by local minima. The
ssessed amplitude reflects only a minor underestimation due to
on-consideration of the declining baseline.

Next, the SCR amplitude determined by ITTP analysis following
rom phasic driver extraction will be considered. If the biasing SCR
receded or followed the elicited SCR by more than about 3 s, the

mpulses of the phasic driver were fully disjunct and the impulse
licited by the biasing SCR resided outside the response window
see Fig. 5). The extracted phasic response precisely corresponded
o the amplitude of the elicited SCR regardless of the superposition
ound in the SC data. For a time-lag of less than three seconds, a
art or the entire phasic response of the biasing SCR was located
ithin the response window. As the total amount of the area of
hasic driver within the response window increased, the resulting
reconstructed) SCR amplitude increased accordingly and eventu-
lly reached the sum of both amplitudes (2 �S) for the case that
oth impulses were fully located within the response window.

.3. Discussion
The simulation study illustrates the impact of typical pitfalls of
he classic trough-to-peak method for scoring SCR amplitudes. It
hows that increasing proximity of a preceding SCR can easily cause
n underestimation of the SCR amplitude of more than 40%. This is
erfectly in line with the finding of Study 1 that for ISIs of 4–8 s
R with an offset varying from −6 to +6 s. The phasic driver (first row) and SC data
se window. The resulting amplitude-sum for SCRs within the response window is
r the improved trough-to-peak method (ITTP) after phasic driver extraction (lower

CTTP shows reduced SCR amplitudes to the second stimulus of up
to 42% as compared to ITTP following phasic driver extraction. The
simulation study also reveals that if the proximity of the preceding
SCR is lower than about three seconds, the second SCR shows no
longer a distinct onset in terms of a local minimum and is misclas-
sified with respect to the response window. This condition should
frequently occur for responses elicited at an ISI of 2 s. In Study 1,
CTTP yielded no significant SCRs in 64% of the trials for an ISI of 2 s.
This suggests that the especially low SCR amplitudes obtained for
CTTP at this ISI condition may not only be due to underestimation
of amplitudes but could largely be attributed to misclassification of
entire SCRs.

Finally, the simulation study indicates that close proximity of
SCRs can also have an inverse effect. If an SCR is closely followed by
a second one, the SCRs appear as one and thus may even result in an
overestimation of the SCR amplitude. Since Study 1 only considered
the responses to the second stimulus per trial, this effect was not
observed directly.

The simulation study thus helped to elucidate some major issues
underlying the scoring bias of the classic trough-to-peak method
observed in Study 1. It also revealed that the phasic driver extrac-
tion method robustly reflects the amount of phasic activity within
the given response window and thus is not prone to typical scoring
biases.

6. General discussion

6.1. Comparison to the classic trough-to-peak method

The assessment of the SCR amplitude by means of the classic
trough-to-peak (CTTP) method requires the detection of a peak

which is usually defined by a local maximum (and a correspond-
ing local minimum). The empirical data from study 1 showed that
SCRs elicited by stimuli with an ISI of only 2 s often do not exhibit
distinguishable peaks. This was supported by the simulation study,
which showed that for inter-SCR latencies of less than about three
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econds two SCRs will generally appear as one. Failure to discrim-
nate single SCRs may entail severe assessment errors as they may
e wrongly attributed either outside or inside the response win-
ow. With phasic driver extraction, responses to stimuli at an ISI of
wo seconds can be distinguished on the basis of two distinct peaks;
owever, the phasic driver responses are not fully distinct. Simu-

ation data demonstrated that the amplitude of an elicited SCR will
e affected by a biasing SCR with inter-SCR latencies of less than 3 s
ue to the overlap of driver impulses. This influence increases grad-
ally with the increasing proximity of the second SCR but does not
how a discontinuous relation as for the CTTP method. For ISIs as
ow as two seconds, not only do SCRs overlap but also the ranges of
xpected onset latencies (according to most definitions of response
indows). An unambiguous classification of SCRs to either stimulus

hus appears impossible due to the variability of the electrodermal
esponse. The partial response overlap then may just reflect the
xisting uncertainty of attribution of the response to either stimu-
us. Response overlaps can be avoided by an adequate experimental
esign; however, the interference with non-specific SCRs can never
e precluded.

Finally, the CTTP method is prone to a general underestimation
f SCR amplitudes due to ignorance of the declining baseline caused
y preceding SCRs. The simulation experiment showed that preced-

ng SCRs even at considerable temporal distance result in marked
nderestimations of the assessed amplitude. The average reduc-
ion of SCR amplitude was previously reported to range from 15 to
7% (Benedek and Kaernbach, 2010; Lim et al., 1997). The empirical
xperiment as well as the simulation study indicated that for very
hort inter-SCR latencies and for equal amplitude of the preceding
CR the underestimations may even be more than 40%. The analy-
is based on phasic driver extraction was not found to be prone to
hese underestimation errors.

.2. Comparison with previous deconvolution approaches

The proposed method shows common grounds with the method
ut forward by Alexander et al. (2005). It is based on a standard
econvolution of SC data and on the assumption that the Bate-
an function represents an adequate IRF. The current approach

akes two additional steps. First, it provides a means for contin-
ous estimation of the tonic activity by applying the technique
f inter-impulse fitting of driver data (Benedek and Kaernbach,
010). The estimation of the tonic activity implicitly returns the
hasic activity underlying SC data. As the phasic driver activ-

ty shows not only distinct positive deflections corresponding to
ingle SCRs but also exhibits a zero baseline, it apparently corre-
ponds more closely to sudomotor nerve activity than the driver
esulting from Alexander et al.’s method, which still reflects a
ompound of tonic and phasic activity. On all accounts, a direct
omparison of phasic driver data and parallel microneurograph-
cal recordings of sudomotor units would be helpful to examine
he actual correspondence of phasic driver and sudomotor nerve
ctivity. Second, the current approach yields an individual estimate
f the typical SCR shape (i.e., impulse response) by optimiza-
ion of the IRF parameters �1 and �2. Considering the extensive
iterature devoted to the topic of inter-individual differences of
he SCR shape associated with state and trait characteristics (an
verview can be found in Boucsein, 1992), this should represent
dditional valuable information. If we want to account for the
nter-individual variability of the SCR shape, the adaptiveness of
his phasic driver extraction is essential for ensuring a plausible

esult.

In the following, we shall compare the current approach to the
ethod of nonnegative deconvolution (Benedek and Kaernbach,

010). Both methods have to deal with the fact that standard decon-
olution with a single IRF – even if optimized individually per
oscience Methods 190 (2010) 80–91 89

participant – cannot perfectly reverse the underlying convolution
process of a neurophysiological process (sudomotor nerve activity)
with the processes of sweat secretion and diffusion in the skin. This
is assumedly due to a certain variability of the SCR shape within a
session. The two methods explore parallel paths how to deal with
this problem.

Nonnegative deconvolution assumes that the variability is due
to early processes within the SCR (i.e., processes occurring in the
temporal vicinity of the SCR peak). These processes are captured by
the remainder of the nonnegative deconvolution and were hypoth-
esized to reflect the opening of poral valves. The diffusion process,
exempt from this variability, can be described with very slow
recovery-time constants.

Phasic driver extraction assumes that the variability is due to
final diffusion processes. Early diffusion can be represented by a
biexponential IRF with fast recovery-times. A single IRF per partic-
ipant thus is sufficient to capture the essential phasic response.
The remainder is this time part of the SCL, resulting in a tonic
activity measure that varies faster than with nonnegative decon-
volution. As a consequence, with the current method the average
time constant of the IRF (�2) was nearly eight times lower and
the average tonic variability was about three times higher than
as previously reported for nonnegative deconvolution (Benedek
and Kaernbach, 2010). A more variable SCL is not unknown
to EDA researchers but may in the absence of full decomposi-
tion primarily reflect the superposition of the trails of preceding
SCRs.

Phasic driver extraction does not aim at a further decompo-
sition of phasic activity. It will thus not allow the differentiated
study of intra-individual variation of the SCR shape as reflected by
the remainder of nonnegative deconvolution. This simplification
implicates practical benefits. While nonnegative deconvolution
results in two continuous phasic data (driver and remainder
data), the current approach results in one single measure of con-
tinuous phasic activity. This allows for a more straightforward
scoring of phasic activity. Moreover, phasic driver extraction is
less computation intensive as compared to the non-standard non-
negative deconvolution. Entire sessions can be analyzed within
seconds.

A second practical issue has been put forward in the present
paper. A decomposition method which separates single phasic
components always has to fall back on some sort of peak detection,
even if it applies to data with enhanced signal-to-noise ratio as with
deconvolution approaches. Peak detection cannot be conceived as a
fully unambiguous issue, since it is based on the assumption of the
existence of distinct entities of activations. In practical data anal-
ysis, the number of detectable local minima and maxima largely
depends on the level of error noise which may introduce addi-
tional local extrema, and of the amount of data smoothing which
may obscure them. Moreover, we could question if an SCR neces-
sarily represents a compact entity. An SCR is thought to reflect the
cumulative effect of the activity of a number of sweat glands (rele-
vant to the electrodes), operating at different activation thresholds
(Nishiyama et al., 2001) and being activated by a subset of different
sudomotor axons (Kennedy et al., 1994; Riedl et al., 1998), which
potentially contribute single spikes (Macefield and Wallin, 1996,
1999; Macefield et al., 2002). The concurrent activity of a high num-
ber of sudomotor axons within certain proximity will be identified
as a nerve burst in the integrated nerve signal derived from multi-
unit recordings, and it will eventually correspond to an apparently
uniform SCR (Bini et al., 1980; Lidberg and Wallin, 1981). Follow-

ing this notion, it may be considered more straightforward to use
an integration measure of phasic activity rather than identify sin-
gle components in the signal and assess their amplitude. It reduces
the impact of windowing problems in event-related designs and
it avoids delicate issues involved in peak detection. We, there-
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ore, proposed the computation of the integrated skin conductance
esponse (ISCR) as an indicator of response magnitude. It repre-
ents the unbiased cumulative phasic activity, derived from the SC
ignal, within a given response period. The ISCR captures entire
esponses accounting for their temporal characteristics instead of
imply considering response peaks. Moreover, as the area of pha-
ic SC data is not altered by the transformation of deconvolution,
he ISCR perfectly equals the area of the represented SCRs. Traxel
1957) already thought of an area measure of SCR to be a more
dequate measure for the entire “quantity of affect” (p. 289). Sim-
larly, in the analysis of EMG data (the rectified EMG signal shows
zero baseline just like the phasic driver) the integrated EMG was

ound to represent overall muscular contraction more accurately
han a simple amplitude (Fridlund and Cacioppo, 1986; Lippold,
967).

The proposed method specifically aims at the analysis of
esponse magnitudes. Since it avoids peak detection, it also does
ot return response latencies. A technique for the assessment of
robust indicator of event-related response latency based on the

alculation of moments was proposed in the description of the
ethod. Additionally, response latencies (i.e., latencies of onset,

eak and offset of each phasic response) can still be computed
y applying peak detection on the phasic driver (cf. Benedek and
aernbach, 2010). Apart from the analysis of response magnitudes,

he continuous signal of phasic activity could also be employed for
orrelation studies involving other continuous measures.

Finally, the current approach imposes less restrictive demands
hich should facilitate a more robust analysis. First, it does not

laim strict nonnegativity of the phasic driver but rather tries
o minimize negativity. Second, it does not claim that the IRF
epresents the SCR for the entire temporal extent but rather an
ssential part of it. To this end, the tonic activity is estimated
t shorter time intervals (10 s instead of 100 s as for nonnega-
ive deconvolution) so that it is able to capture late repercussions
f SCRs which may be attributed to slow diffusion processes
Edelberg, 1993). These two conceptual differences allow for a
igher flexibility in the analysis which should imply a more robust
nalysis. This is especially important in the face of data artifacts.
rtifacts can easily occur if the participant fails to avoid any move-
ents during the experiment. Such artifacts may have a strong

mpact on the computation of a detailed decomposition of SC data
onsidering all underlying components while holding up strong
estrictions to the model. They can however be compensated by
nly local biases when the analysis is allowed more degrees of
reedom.

. General conclusions

The proposed method allows for a separation of SC data into
ontinuous data of tonic and phasic activity. The resulting pha-
ic activity shows a zero baseline and compact, predominantly
istinct phasic deflections. These characteristics proved especially
dvantageous for the unbiased analysis of data resulting from short
nterstimulus intervals with fast succeeding SCRs. An integrative

easure of the extracted phasic activity was proposed as a straight-
orward indicator of the event-related phasic response. The method
hould hence prove to be useful especially in situations with high
hasic activity, whether induced by an experimental setup or rele-
ant in a clinical context.
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