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In many psychophysical experiments, the participant’s task is to detect small changes along a given
stimulus dimension or to identify the direction (e.g., upward vs. downward) of such changes. The
results of these experiments are traditionally analyzed with a constant-variance Gaussian (CVG)
model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three
basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot
account for the observed relationship between detection thresholds and direction-identification
thresholds. It is shown that two alternative models can account for this relationship. One of them is
based on the idea of sensory quanta; the other assumes that small changes are detected on the basis
of Poisson processes with low means. The predictions of these two models are then compared against
receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is
concluded that human listeners’ perception of small and unidimensional acoustic changes is better
described by a discrete-state Poisson model than by the more commonly used CVG model or by the

less favored HT and quantum models.
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Detecting simple differences or unidimensional changes be-
tween sensory stimuli (e.g., changes in brightness or loudness)
and identifying the direction of these changes (e.g., upward vs.
downward) are two fundamental perceptual abilities. How these
abilities are related to one another is an important question for
psychophysicists. The answer has both theoretical and practical
implications. An important practical implication relates to the
choice of psychophysical paradigm for measuring just-
noticeable differences (JNDs) between stimuli. In auditory psy-
chophysics, for instance, the two-interval two-alternative
forced-choice (2I2AFC) paradigm has been commonly used to
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measure JNDs for various sound dimensions. However, JNDs
are usually defined as the smallest stimulus differences that an
individual can detect with a certain level of accuracy (e.g., 70%
correct). In contrast, the 2I2AFC paradigm requires the partic-
ipant to identify the relative positions of the two presented
stimuli along some sensory dimension or, equivalently, to iden-
tify the direction of the stimulus change. Thus, interpretations
of 2I2AFC thresholds in terms of JNDs rest (in most cases,
implicitly) on the assumption that thresholds for the identifica-
tion of the direction of sensory changes are closely related to
thresholds for the detection of those changes. Specifically, it is
commonly assumed that an individual’s ability to identify the
direction of simple sensory changes is limited solely by that
individual’s ability to detect those changes or that as soon as a
change has been detected, its direction can be identified.
Clearly, this assumption is not always warranted. For in-
stance, Semal and Demany (2006) recently identified listeners
who could detect relatively small changes in frequency (sub-
jectively, pitch) between consecutive tones but who required
changes approximately one order of magnitude larger in order
to correctly identify their direction. Similar findings were ob-
tained by Johnsrude, Penhune, and Zatorre (2000) for individ-
uals with auditory-cortex lesions. Another example of dissoci-
ation between change detection (D) and change-direction
identification (I) was provided by experiments concerning the
perception of transient intensity changes in a continuous sound
(Gallun, 2003; Hafter, Bonnel, Gallun, & Cohen, 1998; Mac-
millan, 1971, 1973). These experiments revealed that listeners
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are able to detect transient intensity changes with a cue that
provides no information regarding change direction.

Although these findings show that in some cases, detecting a
change is not sufficient for the identification of its direction, they
represent exceptions. More generally, experimental data in the
auditory perception' literature are consistent with the view that the
ability to identify the direction of changes in sound frequency or
sound intensity is limited only by the ability to detect these
changes. Some information relevant to that issue comes from
studies in which frequency and/or intensity discrimination thresh-
olds measured with a 2I2AFC task (which required participants to
identify the direction of stimulus change) were compared with
thresholds measured in the same participants with a same—
different (AX)? task (which required the detection of a change but
not the identification of its direction). The authors of such exper-
iments (Creelman & Macmillan, 1979; Jesteadt & Bilger, 1974;
Jesteadt & Sims, 1975) intended to determine whether this rela-
tionship was consistent with the predictions of the standard
constant-variance Gaussian (CVG) psychophysical model from
signal detection theory (Green & Swets, 1966; Macmillan &
Creelman, 2005; Wickens, 2001). In this model, the presentation
of a stimulus is assumed to evoke a sensory observation contam-
inated by a Gaussian internal noise with zero mean and constant
variance. Under the assumption that performance in the 2I2AFC
and AX tasks is limited by the same internal noise and that the
listener’s decision strategy is optimal in the likelihood-ratio sense,
the model predicts that the paradigm-independent index of sensi-
tivity d', defined as the standardized distance between the means
of the probability density functions (PDFs) corresponding to the
two stimulus classes that must be discriminated, should be the
same in the two tasks. As it turns out, the mean d’ ratio (d’ in
the AX task over d’ in the 2I2AFC task) measured across several
studies (Creelman & Macmillan, 1979; Jesteadt & Bilger, 1974;
Jesteadt & Sims, 1975; see also the compact summary of these
studies in Macmillan and Creelman, 2005, p. 182) is approxi-
mately equal to 0.8. This ratio, smaller than 1, is obviously
consistent with the idea that the ability to identify the direction of
sensory changes is limited only by the ability to detect these
changes. On the other hand, the reason why the ratio differs from
1 is not clear. One possibility is that listeners had difficulties using
a stable response criterion in the AX task. Another possibility,
which is more interesting, is that the CVG model does not ade-
quately describe how human listeners detect simple auditory
changes.

In the theoretical work reported here, detailed measurements of
auditory D and I thresholds were used to test several psychophys-
ical models of auditory D. The considered acoustic changes were
unidimensional, and it was reasonable to assume that as soon as
they were detectable, their direction could be identified; for these
changes, in other words, a warranted assumption was that detec-
tion and direction identification merely represented different de-
cision rules applied to the same sensory information (Thomas,
1985; Thomas, Gille, & Barker, 1982). The analyzed data were
collected with a dual-pair psychophysical paradigm. This para-
digm allowed D and I thresholds to be measured with the same
stimulus design, and it had the advantage of alleviating some of the
concerns usually associated with the two-interval (2I) AX design.

The outline of this article is as follows. First, the dual-pair
psychophysical paradigm that was used to collect the experimental
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data is briefly described. Then, the predictions of two classic
psychophysical models (the CVG model and the high-threshold
[HT] model) regarding the relationship between D thresholds and
I thresholds in the considered paradigm are derived. In the third
section, these predictions are compared with the experimental data.
In the fourth section, ways in which the CVG model may be
reconciled with the data are explored. The fifth section is devoted
to exploring alternative models, and it shows that two models,
assuming quantized-Gaussian (QG; Stevens, 1972; Stevens, Mor-
gan, & Volkmann, 1941; Stevens & Volkmann, 1940) and
Poisson-distributed (Kaernbach, 1991a) decision variables, respec-
tively, can account for the experimental data. Finally, the relative
merits of the two latter models are discussed.

The Dual-Pair Paradigm

The experimental data that provide the empirical basis for this
article were collected with a four-interval stimulus design, also
known as dual pair. As the name indicates, in this design, two pairs
of stimuli are presented on each trial. In one of the two pairs, the
stimuli are identical; in the other, they are different. For brevity,
we refer to these pairs as the same pair and the different pair. The
order of presentation of the two pairs is randomized, each of the
two possible orderings being as likely (a priori) as the other. In
the different pair, the change between the first stimulus and the
second stimulus can be either upward (e.g., the second tone has a
higher intensity than the first) or downward, with equal probabil-
ity. This dual-pair stimulus design can be used to measure D and
I, the only difference being in the instructions given to the partic-
ipant. In the D task, the participant is asked to indicate which of the
two pairs contained different stimuli. In the I task, the participant
must report in which direction the stimuli in the different pair
changed.

The dual pair design makes it possible to measure both D and I
with the same stimulus design while avoiding (or at least, allevi-
ating) concerns regarding the influence of bias on performance. In
this respect, this four-interval design is superior to the more
popular two-interval AX paradigm for measuring D because the
two-interval AX is notoriously susceptible to bias. In fact, the
dual-pair design can be thought of as a two-interval AX design
embedded in a 2I2AFC design (Noreen, 1981).

In addition to these general features, the model predictions
derived below take the following methodological features into
account. First, the frequency (or amplitude-modulation [AM] rate)

! Our choice of focusing on audition was motivated in part by a greater
familiarity with the auditory-perception literature and in part by the fact
that detailed measurements of thresholds for the discrimination of changes
in various sound parameters (intensity, frequency, and amplitude-
modulation rate) were available to us. These empirical data, which repre-
sent a total of 1,210 threshold measurements across 11 listeners (an average
of 110 threshold estimates per listener), provided a unique opportunity to
distinguish between different psychophysical models, the predictions of
which are not distant enough to permit statistical separation with smaller
data sets.

2In the same-different paradigm, also known as AX or as 2IAX
paradigm, the two stimuli presented on a trial (A and B) can be either
identical (AA or BB) or different (AB or BA), and the observer’s task is to
indicate whether the stimuli were the same or different.
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of the first stimulus in each pair was randomized independently
from that in the other pair. This technique, known as roving in the
auditory psychophysics literature, is frequently used to discourage
participants from comparing individual stimuli across the two
pairs. When, as was the case here, the roving range is large
compared with the measured thresholds, listeners are forced to rely
on perceived differences between the stimuli in each pair rather
than on comparisons of the individual stimuli across pairs, across
trials, or with a fixed internal reference in memory. Second,
thresholds in the D and I tasks were measured with an adaptive
procedure that tracked the 75%-correct point on the psychometric
function (Kaernbach, 1991b). Finally, to avoid some of the diffi-
culties inherent in double-judgment psychophysics (Klein, 1985),
the D and I thresholds were tested not simultaneously but in
separate blocks of trials, intermingled within each test session.

Under those methodological circumstances, what do classic
psychophysical models predict regarding the relationship between
thresholds in D and I tasks?

Predictions of the CVG Model and the HT Model
The CVG Model

Gaussian signal-detection theory posits the existence of a con-
tinuum of sensory observations, contaminated by normally distrib-
uted internal noise (Green & Swets, 1966). In the most common
instantiation of this theory, the CVG model, it is further assumed
that the variance of the internal noise is constant, that is, that it is
the same for all observations and does not vary over time. In
addition, the Gaussian internal noises added to the observations are
assumed to be uncorrelated, that is, statistically independent.

Because the dual-pair design described above involves the pre-
sentation of four stimuli on each trial, each stimulus yielding one
observation, the decision space for this paradigm is four dimen-
sional. However, in the experiments considered here, wide across-
pair roving was used to prevent listeners from taking advantage of
comparisons between individual observations across the two pairs.
With such roving, we can assume that the observer derives no
significant information from the absolute positions of the obser-
vations or from comparisons between single observations in dif-
ferent pairs; only the relative positions of, or the differences
between, the observations within each pair are relevant (Dai,
Versfeld, & Green, 1996; Macmillan & Creelman, 2005; Macmil-
lan, Kaplan, & Creelman, 1977; Noreen, 1981). Therefore, there is
no loss of information in reducing the decision space to two axes
corresponding to the signed differences between the observations
in each pair. Denoting the four observations made consecutively
on each trial by y,,, y,2, ¥»;, and y,,, in that order, we can plot the
difference Ay, = y,, — y,, (first pair) along the x-axis, and the
difference Ay, = y,, — y,; (second pair) along the y-axis of a
Cartesian plane.

Figure 1 provides a schematic illustration, in this decision space,
of the two-dimensional, conditional PDF of the difference vari-
ables, Ay, and Ay,, conditioned on the different pair being pre-
sented first and on the change being upward; accordingly, the
bidimensional Gaussian PDF has a positive mean along axis Ay,
and a zero mean along axis Ay,.> It is easy to imagine what the
conditional PDFs for the other three possible stimulus configura-
tions look like.

Figure 1. Schematic illustration of the decision space for the dual-pair
detection and identification tasks, according to the constant-variance
Gaussian model. Differences between the two observations from the first
pair, y,, — yy,, are plotted along the Ay, axis. Differences between the two
observations from the second pair, y,, — y,,, are plotted along the Ay, axis.
The four quadrants (labeled P1 to P4) delimited by the major and minor
diagonals correspond to different decision regions, as explained in the text.
The fuzzy patch represents the two-dimensional probability density func-
tion of the decision variables (with darker areas corresponding to regions
of higher probability density) for trials in which the first pair contained an
upward change; accordingly, the mean is positive along the Ay, axis and
zero along the Ay, axis. In this example, the mean of the PDF along the Ay,
axis was chosen so that the probability mass over quadrants P1 and P3 was
equal to .75, the targeted probability of a correct response in the detection
(D) task in the psychophysical experiments described in the text.

The correct-response probabilities in the D and I tasks can be
found by integrating the conditional PDFs of the decision variables
over regions of the decision space that correspond to a correct
response. These regions depend on the decision rule used by the
observer for task performance. An ideal observer uses optimal
decision rules, that is, rules that maximize the probability of a

3 Here, as in many other applications of signal detection theory, the
expected values of the observations are linearly related to the values of the
relevant physical parameters, provided an appropriate choice of units for
the latter. In the case of intensity, the decibel (dB) is an appropriate unit
because the index of sensitivity d’, which is defined as the standardized
distance between the expected values of the observations evoked by the two
stimuli to be discriminated, increases roughly linearly with the stimulus inten-
sity difference in dB (Buus & Florentine, 1991; Jesteadt & Bilger, 1974). For
frequency discrimination, d’ increases approximately linearly with the fre-
quency difference between the two stimuli in hertz (Hz; Nelson & Freyman,
1986); we assume that the same conclusion applies for AM rate, at least in the
range of rates studied here. In the experiments considered here, thresholds
were measured in dB for intensity discrimination and in cents for frequency or
AM-rate discrimination; small frequency differences in cents are approxi-
mately proportionally related to their counterpart in Hz.
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correct response, given the constraints. For the D task with wide
across-pair roving, the optimal decision rule consists of selecting
the pair for which the magnitude (i.e., absolute value) of the
difference between the observations is largest (Macmillan et al.,
1977; Noreen, 1981; Rousseau & Ennis, 2001). According to this
rule, the observer chooses Pair 1 if the point defined by the
differences between the observations in each pair falls inside
quadrant P1 or P3 and chooses Pair 2 if it falls inside quadrant P2
or P4. Therefore, under the CVG model, the probability of a
correct response in the D task can be calculated as the integral,
over the region corresponding to quadrants P1 and P3, of the joint
PDF shown in Figure 1, which corresponds to the case in which an
upward change occurred in the first pair.* Macmillan et al. (1977;
see also Micheyl & Messing, 2006) provided a formula for this
integral as a function of d'; this equation is

o= [o(2)] [ o) o

where PC, . denotes the proportion of correct responses in the
D task under the CVG model, and ®(x) denotes the cumulative
standard normal function, defined as the integral from — to x of
the Gaussian function, with zero mean and unit variance. The
converse equation, which gives d’ as a function of PCpeyq is

d = 2c1>-‘(l 4 [ECpevs 1)
5 ,

2 4 2)

where @' denotes the inverse cumulative standard normal func-
tion. According to this equation, when PC,, .y equals .75 (the
probability of correct responses corresponding to threshold in the
experimental data used here), d’ in the D task equals approxi-
mately 2.10.

For the I task, an intuitive strategy is to select the pair in which
the magnitude of the difference between the two observations is
largest, to respond “up” if the signed difference between these
observations is positive, and to respond “down,” if otherwise.
Going through the four quadrants of Figure 1, which illustrates the
PDF of the decision variables for the case of an upward change in
the first pair, we find that correct responses will occur in this case
whenever the point (Ay,, Ay,) falls in the half-plane formed by the
quadrants P1 and P2. Thus, the decision rule may be reformulated
as follows: Respond “up” if Ay, > —Ay,; otherwise, respond
“down.” Note that this can be rewritten as respond “up” if Ay, +
Ay, > 0, providing another description of the same decision rule.
As it turns out, this decision rule is optimal in a likelihood-ratio
sense. Using this decision rule, we can derive the probability of
responding correctly in the I task under the CVG model; it is

d’
PCievg = cI)(?) (3)

Note that this equation is identical to that defining the relation
between d’ and the probability of a correct response of an unbiased
observer in the single-interval (yes—no) task (Green & Swets,
1966; Macmillan & Creelman, 2005). Equation 3 can be used to
determine that the value of d’ corresponding to a correct-response
probability of .75 in the I task is approximately 1.34. This is
roughly 1.56 times smaller than the value found for the D task with
Equation 2. Thus, according to the CVG model, thresholds should
be approximately 56% larger in the D task than in the I task.
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The HT Model

HT theory posits the existence of a sensory threshold that can
never be exceeded in the absence of a signal (for a review of the
theory, see Green & Swets, 1966; Macmillan & Creelman, 2005;
Wickens, 2001). In the case of discrimination, the signal is defined
as the physical difference, A, between the two stimuli to be
discriminated. The theory further posits the existence of two in-
ternal states: a nondetect state, which occurs whenever the signal
does not exceed the threshold, and a detect state, which occurs
whenever the signal exceeds the threshold. Participants left in the
nondetect state take a guess, which in the absence of bias is equally
likely to be either response alternative.

A slight complication arises from the fact that with the experi-
mental design considered in this note, A can be either positive or
negative. Although the sign of A is irrelevant for the D task, it is
crucial for the I task. Therefore, we must assume two types of
detect states: a detect+ state, which corresponds to the detection of
an upward change, and a detect— state, which corresponds to the
detection of a downward change. The three internal states,
detect—, nondetect, and detect+ are separated by two thresholds.
For simplicity, these thresholds are assumed to be positioned
symmetrically around zero, along the relevant physical axis.

The HT model assumes that the threshold will never be ex-
ceeded in the absence of a change. If an upward change is never
registered in a same pair, that is, a pair of identical stimuli, it is
logical to assume that such a change is also never registered in
presence of a downward change. Thus, according to this model,
whenever a change has been detected, the direction of that change
should be readily identified.

To account for the probabilistic nature of detection or discrim-
ination, HT theory posits that thresholds fluctuate over time. Thus,
associated with each A, there is a certain probability, P,(A), that
the observer is in one of the two detect states and a probability of
1 — P,(A) that he or she is in the nondetect state. Because for the
same pair, A = 0, and because according to the theory the thresh-
old can never be exceeded in the absence of the signal, the same
pair can never leave the observer in the detect state. Therefore, at
the end of a trial in the dual-pair paradigm, the HT observer can find
himself or herself in one of the following three situations: (a) he or she
detected an upward change in one of the two pairs, (b) he or she
detected a downward change in one of the two pairs, (c) he or
she failed to detect a change. In cases a and b, the response of the
listener in the D task should obviously correspond to the pair in which
a change was detected; in those cases, the probability of a correct
response is 1. In case c, the listener is forced to guess, and the
probability of a correct response is .5. For the I task, the response
of the listener should, according to the model, correspond to
the perceived direction of the change in cases a and b; in case c, the
listener should, again, guess. It follows that under this model
the predicted probability of a correct response in the I task is the

4 The integration does not need to be carried out for the other possible
stimulus configurations and response regions because the PDFs and re-
gions are symmetric.
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same as that in the D task.® Thus, unlike the CVG model, the HT
model predicts that the threshold in the I task should be the same
as the threshold in the D task, that is, a D/I threshold ratio of 1.

Comparison of Model Predictions and Experimental Data

To test the predictions of the two above-described models, we
reanalyzed data collected in a series of experiments concerning
detection and direction identification of changes in frequency,
intensity, and AM rate. The vast majority of these data was
reported in an earlier article (Semal & Demany, 2006). Although
that article is entitled “Individual Differences in the Sensitivity to
Pitch Direction,” it contains data on intensity and AM-rate dis-
crimination in addition to frequency discrimination, and we
strongly encourage readers to look into it for details regarding how
the discrimination thresholds on which the D/I threshold ratios
reported here were measured. It is important to note that Semal and
Demany’s (2006) article was primarily focused on listeners who
exhibited unusually large thresholds in the discrimination of the
direction of frequency changes (i.e., the I task); these listeners
were recruited especially for the purpose of that study and are not
representative of those tested in the vast majority of earlier studies
on frequency discrimination. In contrast, here, we were specifi-
cally interested in listeners who did not exhibit a conspicuous
deficit in the identification of the direction of frequency changes
and whose thresholds in this task are normal in the sense that they
are in line with those typically reported in the psychoacoustical
literature.® Additional data on frequency discrimination, which
were collected by the same authors using the same paradigm as in
their original study but which were not reported in the 2006 article,
were also included in the present analysis; these supplementary
data are as of yet unpublished. Overall, the data analyzed here
represent a total of 1,210 threshold measurements (460 for fre-
quency discrimination, 630 for intensity discrimination, and 120
for AM-rate discrimination) from 11 different listeners.

The geometric means and ranges of the D and I thresholds for
frequency, intensity, and AM-rate discrimination that were used in
the analyses described below are indicated in Table 1. For fre-
quency discrimination, the mean D and I thresholds (expressed in
musical cents; 1 cent = 1/100 semitone = 1/1,200 octave) corre-
spond to frequency differences of less than 1%. For AM-rate
discrimination, the thresholds (also expressed in cents) are very
much larger, as expected from previous studies on AM perception
(Formby, 1985; Hanna, 1992). For intensity discrimination, the
thresholds were around 2 dB. In comparing these thresholds with
those obtained in earlier studies, it is important to note that the
thresholds reported here were measured with a wide roving range,
which explains why they are somewhat larger than those reported
in earlier studies with no (or smaller) roving. The frequency and
intensity discrimination thresholds reported here are generally
consistent with those measured in other studies with roving (e.g.,
Berliner & Durlach, 1973; Demany & Semal, 2005). It is important
to note that for each of the three dimensions considered, thresholds
in the D task were larger, on average, than thresholds in the I task.

For each listener, we computed the mean ratio between the
thresholds measured in the D task and the thresholds measured in
the I task.” Statistical bootstrap (Efron & Tibshirani, 1993) was
used to estimate the 95% confidence intervals around these mean
D/I threshold ratios.® Figure 2 shows the mean D/I ratios. Each
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circle corresponds to the estimated D/I ratio for a given listener
(identified by a specific letter) and a given acoustic dimension,
along with the associated 95% confidence intervals. The predic-
tions of the CVG and HT models, which correspond to D/I ratios
of 1.56 and 1.00, are indicated by horizontal solid lines. It can be
seen that 17 of the 18 D/I ratios displayed in Figure 2 fall between
1.0 (the prediction of HT theory) and 1.56 (the prediction of the
CVG model); the exception (Participant J, frequency discrimina-
tion) is a D/I ratio of 1.57. In view of their confidence intervals, 8
D/I ratios are statistically consistent with the CVG model and are
not statistically consistent with the HT model, 6 go in the opposite
direction, and the remaining 4 are inconsistent with both models.
Further statistical evidence that the data do not agree with the
prediction of either model is provided by a simple sign test: If the
CVG model were correct, the mean D/I ratios should fluctuate

5 These probabilities can be computed as PCyyr = PCppyr = Pp(A) +
[1 — P,(A)]/2. The threshold corresponding to the proportion of correct
responses targeted by the tracking procedure, here .75, should equal that A
for which P(A) + [1 — Pp(A))/2 equals .75, which simplifies to P,(A) =
.5; the value of A that satisfies this equation can be found by inverting the
function relating A to P,,.

¢ As mentioned in the introduction, some of the listeners tested by Semal
and Demany (2006) had unusual perceptual difficulties in identifying the
direction of changes in frequency; they could detect relatively small
changes in frequency but needed much larger frequency differences before
they could reliably identify the direction of these changes. Judging from the
results of other studies in the literature, which generally found comparable
thresholds (or performance) in the detection and the identification of
frequency changes (Creelman & Macmillan, 1979; Jesteadt & Bilger,
1974; Nelson et al., 1983; Sek & Moore, 1995), such listeners appear to be
atypical. Accordingly, in the present reanalysis, we decided that for fre-
quency discrimination, we would include only the data from the three
listeners (L1, L2, and L3) who had the smallest thresholds in Semal and
Demany’s (2006) study. In 2007, four other listeners were tested in exactly
the same conditions. The data of these listeners were included into the
reanalysis. As a result, data from seven listeners are presented for fre-
quency discrimination. Finally, we also excluded Semal and Demany’s
frequency discrimination data for pure tones with very low frequencies
(<120 Hz) because, in that case, the frequency changes may have been
systematically associated with changes in sensation level and loudness,
making it difficult to assess which perceptual cue (or cues) was used by the
listeners.

7 For consistency with the way in which the thresholds were originally
measured, the mean ratios were computed with the geometric mean rather
than the arithmetic average.

8 The technical details of the bootstrapping procedure are as follows:
First, the D and I thresholds measured in the considered listener were
log-transformed. Then, they were independently resampled, with replace-
ment, a large number of times (N = 100,000), keeping the same sample
size as the original sample. The arithmetic average of the log-transformed
values in each sample was then computed, still separately for the D and I
tasks, and the difference between the resulting averages (taken pairwise, in
the order in which the samples were generated) was computed, resulting in
a single series of 100,000 differences. The statistical distribution of these
differences was used in order to estimate the 95% confidence intervals. To
increase the stability and accuracy of the estimate, the distribution was first
fitted with a Gaussian with a maximum-likelihood fitting procedure. The
confidence interval was determined by adding or subtracting 1.96 times the
standard deviation of the best-fitting Gaussian to or from its mean. Finally,
the resulting values were transformed back from log to linear space.
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Table 1
Across Participants Geometric Means and Ranges of the Thresholds Measured in the D Task and the
I Task
Intensity
Frequency discrimination discrimination AM-rate discrimination
Task M Range M Range M Range
D 13.7 10.3-14.8 2.2 1.2-4.2 184.3 152.0-223.4
I 9.9 8.8-11.0 1.8 0.9-3.9 155.2 110.7-208.4
Note. Frequency discrimination is in cents and intensity discrimination is in decibels. D = detection; I =

identification; and AM = amplitude modulation.

around 1.56, with roughly half of them below that value and with
the other half above it. Instead, 17 out of the 18 measured mean
D/I ratios were lower than 1.56, an outcome that has a negligible
probability of occurring (p < .0001) under the hypothesis that the
underlying mean D/I ratio is 1.56. For the HT model, the outcome
is even clearer: None of the mean D/I ratios is lower than 1.
Although a trend is apparent for D/I ratios to be higher (and
closer to the prediction of the CVG model) for frequency discrim-
ination than for the other two acoustic dimensions tested, the mean
difference between the D/I ratios for frequency discrimination and
intensity discrimination failed to reach statistical significance;
t(12) = 1.99, p = .069. Thus, it is not clear that the relationship
between D and I thresholds really differs across auditory domains;
this is a question for future studies. Assuming for now that the
fluctuations in the mean D/I ratios across acoustic dimensions
merely reflect random variability across and/or within listeners, it
is interesting to pool the data to compute the grand average
(geometric mean) D/I ratio, across all acoustic dimensions and
listeners. The result is a D/I ratio of 1.27. This value, which is
indicated by the horizontal dashed line in Figure 2, falls almost
exactly halfway between the predictions of the HT and CVG
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Figure 2. Mean individual detection/identification (D/I) threshold ratios
measured in 11 listeners (A, B, C, ... K) for three sound attributes
(frequency, intensity, and amplitude modulation [AM] rate). Values greater
than 1.0 indicate that the threshold for detection of a change is higher than
the threshold for the identification of the direction of the change. Note that
only two listeners (A and B) were tested on all three attributes. Error bars
indicate the 95% confidence intervals around the mean ratios, estimated
with statistical resampling (bootstrap). The two solid horizontal lines
indicate the predictions of the constant-variance Gaussian model (a ratio of
1.56) and of the high-threshold model (a ratio of 1.00). The geometric
mean of the 18 plotted D/I ratios is indicated by a dashed line.

models, making it difficult to favor one model over the other.
Judging from the confidence-interval bars in Figure 2, a model that
would be able to predict a D/I ratio of 1.27 would be statistically
consistent with the vast majority of the data points shown in this
figure: 16 out of the 18 confidence intervals encompass this value.
In summary, neither the HT model nor the CVG model provides
a satisfactory account of the observed relationship between the
measured D and I thresholds. Although the HT model predicts a
D/I ratio of 1.00, which is significantly lower than more than half
of the measured mean D/I ratios, the CVG model predicts a ratio
of 1.56, which is significantly higher than more than half of the
measured mean D/I ratios. Overall, the mean measured D/I ratio
falls almost exactly between the predictions of these two models.
This makes it difficult to favor one model over the other, and it
suggests that in fact, neither of these two models based on wide-
spread assumptions is consistent with the experimental data.

Can the CVG Model Be Reconciled With the Data?

In this section, we explore whether and how the CVG model can
be modified to yield predicted D/I ratios between 1.00 and 1.56,
consistent with the empirical data. The CVG model is character-
ized by several assumptions. In particular, in this model, it is
assumed that the sensory observations on a trial are contaminated
by additive Gaussian noises, which are uncorrelated and which
have a constant variance. Moreover, the relationships between d’
and the probability of a correct response for the D and I tasks, as
given in Equations 1 and 3, are based on the assumption that the
observer is unbiased, that is, the observer has no a priori preference
for either response alternative. Departures from these assumptions
affect the predictions of the model and can in some cases yield
smaller predicted D/I threshold ratios.

Some intuition into which changes in model assumptions are
likely to yield predicted D/I ratios lower than 1.56 can be gained
by considering the geometry of the decision space illustrated in
Figure 1. Any geometric transformation of PDF or decision axes
that increases the probability mass in quadrant P1 or P3 relative to
that in quadrants P2 or P4 contributes to lower predicted threshold
in the D task relative to that in the I task. To limit the number of
possible transformations, we considered only linear transforma-
tions (i.e., stretchings and/or rotations of the PDF or decision axis)
that had a relatively simple interpretation. For instance, horizontal
stretching of the PDF corresponds to an increase in the variance of
the internal noise associated with the sensory trace evoked by the
first pair, which might be due to memory noise (as discussed
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below); a stretch and a 45° rotation of the PDF reflects correlation
between the decision variables, due possibly to fluctuating bias (as
discussed below).

To compute how such modifications affected the predicted D/I
ratios, we ran a series of computer experiments simulating the behav-
ior of a virtual listener in the D and I tasks with modified versions of
the original CVG model. Our main findings are summarized below.

Nonconstant Internal-Noise Variance?

The CVG model assumes that the variance of the internal noise
that contaminates the sensory observations remains constant over
time. There are at least two reasons why this assumption might not
hold. The first relates to the possible influence of memory on
sensory representations. According to the CVG model, correct
performance in the D and I tasks requires comparing a quantity
derived from the two observations in the first pair with one derived
from the two observations in the second pair. Thus, it requires that
the observer hold in memory the first quantity, or the original
observations from which it derives, until the second quantity can
be computed. Retention in memory is not perfect. Stochastic
diffusion models of memory assume that sensory traces undergo a
random walk, which may be modeled as a linear increase in
internal noise variance as a function of time (Kinchla & Smyzer,
1967). According to this type of model, the variance of the internal
noise associated with the difference between the observations in
the first pair should be larger than that associated with the differ-
ence between the observations in the second pair. Monte-Carlo
simulations showed that systematic differences in internal noise
magnitude between the first and the second pairs could produce
D/I threshold ratios lower than 1.56. However, these simulations
also revealed that in order for the predicted D/I ratio to equal 1.27
(the mean D/I ratio measured based on the experimental data), the
standard deviation of the internal noise had to change (increase or
decrease) by a factor of approximately 4 between the first pair and
the second pair.” Assuming that such a difference in internal-noise
magnitude between the sensory representations of the differences
in the two pairs was due entirely to sensory-trace diffusion occur-
ring between the offset of the first pair and that of the second (i.e.,
an interval of 1.45 s), and that trace variance increases linearly as
a function of time, this should translate into an approximately
fourfold decrease in d’ in a 2I2AFC task as the delay between the
two stimuli is increased from 0.55 s to 2 s. Clément et al. (1999)
found that d" decreased by a factor of about 2 as the delay between
the two sounds that listeners had to discriminate increased from
0.5 s to 2 s. Thus, memory noise does not provide a plausible
explanation for why thresholds in the D task are only 27% larger
than thresholds in the I task, on average.

A second reason why the magnitude of the internal noise added
to the observations could differ between the two pairs relates to the
use of across-pair roving. As mentioned earlier, the data in Fig-
ure 2 were obtained in experiments in which the frequency (or AM
rate) of the stimuli was roved over a relatively wide range across
pairs to discourage listeners from comparing individual observa-
tions between the two pairs on a trial. Although data in the
literature (Buus & Florentine, 1991; Jesteadt & Bilger, 1974;
Nelson & Freyman, 1986) indicate that frequency and intensity
JNDs do not vary markedly over the frequency range used as
roving range here (400-2,400 Hz), it is possible that even small or
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moderate differences in internal-noise variance across pairs due to
roving contributed to significantly reduce D/I ratios. To investigate
this possibility, we ran Monte-Carlo simulations in which the
standard deviation of the noise added to the sensory observations
varied randomly across pairs, being drawn from a probability
distribution that was uniform on a logarithmic axis (consistent with
the use of uniform roving on a semitone frequency scale in the
experiments). The simulation results revealed that such across-pair
fluctuations in internal-noise magnitude could indeed produce
smaller predicted D/I ratios.'® However, they also revealed that for
this effect to explain D/I ratios as small as 1.27, it was necessary
to assume that the standard deviation of the internal-noise varied
by a factor of more than 100 across the roving range. Such a large
variation in internal-noise magnitude would lead to wide variations
in frequency or intensity JNDs across the considered frequency
range (400-2,400 Hz), inconsistent with psychophysical data in
the literature (Buus & Florentine, 1991; Jesteadt & Bilger, 1974;
Nelson & Freyman, 1986). Thus, roving-related fluctuations in
internal-noise magnitude cannot plausibly explain the finding of
smaller than expected D/I ratios.

Response Bias?

Another way in which the CVG model can be altered to yield
lower D/I ratios involves introducing bias into the decision. In
general, the proportion of correct responses achieved by a biased
observer is lower than that achieved by an unbiased observer.
Thus, a simple way to reduce the D/I ratio predicted by the CVG
model is to assume that listeners are not unbiased and that the bias
affects only the I task or, at least, that its influence on thresholds
is larger in this task than in the D task. The simplest form of bias
corresponds to a constant a priori preference for one of the two
response alternatives. For instance, some listeners may be more
inclined to choose the upward direction than to choose the down-
ward direction; for other listeners, the converse may be true. In
fact, an analysis of the trial-by-trial data collected for some of the
listeners whose data are shown in Figure 2 showed no such bias.
Instead, the listeners’ responses were equally distributed between
upward and downward, as they should be, given that these stim-
ulus alternatives were equally likely a priori. Thus, this simple
form of bias can be ruled out.

A subtler form of bias, which cannot be ruled out so easily, consists
of fluctuations in the position of the internal criterion across trials.
Such bias may occur as a result of the observer’s response to the

? The D/I ratio was similarly reduced if the noise variance was larger in
the second pair than in the first pair. However, it is difficult to think of a
reason why this might have occurred in actual listeners.

10 In these simulations and in those described hereafter, unless otherwise
mentioned, the assumed decision rules were as specified above. These rules
did not always lead to optimal (maximum-likelihood) decisions. However,
in most of the cases studied, it was reasonable to assume that the observer
was unable to adapt the decision strategy for best performance, either due
to incomplete information about the stimulus or because the optimal rule
was too sophisticated. The situation of across-pair fluctuations in internal
variance considered here is a case in point. In that situation, the optimal
strategy required the observer to memorize all possible distributions of the
noise, conditioned on the stimulus frequency, and to select the appropriate
distribution based on the current estimate of the stimulus frequency.
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current trial being influenced by his or her response to the previous
trial or, if feedback is given (as was the case in the experiments
considered here), by the outcome of that trial, that is, whether the
response was correct or incorrect (Treisman & Williams, 1984). For
example, the participant may be inclined to choose the same response
as that given on the previous trial if that preceding response turned out
to be correct. Although the precise generating mechanisms of this
fluctuating bias cannot be determined on the basis of the data cur-
rently available, the fact that the stimulus alternative presented on a
given trial did not depend on that presented on the previous trial
makes it possible to model this type of bias as a random variation of
the decision criterion. Moreover, although variable across trials, the
direction and magnitude of the shift may to a first approximation be
regarded as constant within a trial. As a result, this form of fluctuating
bias introduces some correlation between the decision variables de-
rived from the different observations or pairs of observations on a
trial; the assumption of statistical independence, which was made in
the original CVG model, is violated.

A schematic illustration of this effect is provided in Figure 3.
The situation illustrated in this figure is that in which an upward
change occurred in the first pair, and the task is to identify the
direction of the change. For this task, a random shift of the
criterion is mathematically equivalent to an addition of the same
random value to the two decision variables, Ay, and Ay,. Figure 3
shows how this modifies the joint PDF. The contour of the PDF,
which was circular in Figure 1, is now elongated along the major

Figure 3. Decision space for the constant-variance Gaussian model with
fluctuating bias added to the decision variables, Ay, and Ay,. In this
example, the bias-related noise has a normal distribution with a standard
deviation twice as large as that of the sensory noise. As manifested by the
elliptical shape of the probability density function and its diagonal
orientation, this type of bias introduces a correlation between the two
decision variables. This correlation contributes to reduce the proportion
of correct responses, compared with the case in which no such bias is
present (Figure 1).
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diagonal of the decision plane, reflecting a positive correlation
between the two decision variables. This transformation affects the
way in which the mass of the PDF is shared among the four
quadrants. The effect may be depicted schematically as an increase
in the proportion of the mass in the half-plane formed by P4 and
P3 at the expense of that in the half-plane formed by P1 and P2.
Assuming that the observer is unable to adjust his or her decision
strategy to take into account the correlation between the decision
variables, the predicted proportion of correct responses in the I task
is still given, as in Figure 1, by the proportion of the probability
mass contained in quadrants P1 and P2, relative to that contained
in quadrants P3 and P4. An increase in the mass in P3 at the
expense of P2 translates into a decrease of the predicted proportion
correct for the I task and, therefore, in a smaller predicted D/I ratio.

Figure 4 shows how the D/I ratio predicted by a modified CVG
model based on this assumption of fluctuating bias in the I task
depends on the standard deviation of the bias-related noise relative to
that of the sensory noise. As the relative magnitude of the fluctuating
bias increases from zero to infinity, the predicted D/I ratio decreases
from 1.56 to 1.00. For the D/I ratio predicted by the model to equal the
mean measured D/I ratio (1.27), the bias-related noise must have
approximately the same standard deviation as the sensory noise.

To summarize, D/I ratios lower than 1.56 can be accounted for by
assuming a CVG observer with a fluctuating bias toward the upward
response or the downward response in the I task. However, it is
important to note that this is an ad hoc assumption. The data presented
in this note provide no evidence for or against such fluctuating bias,
affecting selectively the decision between the upward and the down-
ward responses. One might equally well assume that a similar fluc-
tuating bias also affected the decision between the first and the second
pairs in the D task, leading the listener to favor the first interval on
some trials and the second interval on other trials. Such bias would
reduce the proportion of correct responses in the D task, thereby
contributing to bring the D/I ratio back toward its original value of
1.56. Thus, an explanation of the results in Figure 2 in terms of
fluctuating bias remains largely speculative.

Nonlinear Psychometric Functions?

A third way in which D/I ratios lower than 1.56 might be
explained without completely abandoning the CVG model in-
volves violating the assumption of linear psychometric functions.
So far, we have assumed in all mathematical derivations and
simulations that d" was proportional to the physical difference (in
cents, or in dB) between the stimuli to be compared. This assump-
tion is supported by results in the psychoacoustical literature (Buus
& Florentine, 1991; Nelson & Freyman, 1986; Turner & Nelson,
1982)."" However, due to variability in the psychophysical mea-
sures, the experimental evidence is necessarily limited, and it
cannot be used to rule out moderate deviations from linearity.
Therefore, one may wonder how deviations from the assumption

' In the case of frequency discrimination, Turner and Nelson (1982) and
Nelson and Freyman (1986) conclude that d’ is proportional to the fre-
quency difference in Hertz. Here, frequency differences were measured in
musical cents rather than in Hertz. However, for very small frequency
differences, such as the thresholds displayed in the second column of Table
1, differences in Hertz and in cents are proportional to each other and,
therefore, equivalent.
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Figure 4. Influence of the magnitude of the bias toward one of the two

response alternatives in the detection (D) task on the detection/
identification (D/I) threshold ratios predictions of the constant-variance
Gaussian model. The magnitude (i.e., standard deviation) of the bias is
expressed relative to that of the sensory noise. Pc = proportion of correct
responses.

of linear psychometric functions influence the D/I ratio predictions
of the CVG model and, more specifically, whether moderate
deviations may in fact result in substantially lower predicted
values, consistent with those shown in Figure 2.

To investigate this possibility, we ran additional Monte-Carlo
simulations with the basic CVG model, this time assuming that the
relationship between d’ and stimulus difference A followed a
power law (d' = A¥) instead of a linear relationship. The power
law is often used to model psychometric functions (Gescheider,
1997; Hartmann, 1998). It presents the advantage over other ele-
mentary mathematical functions, such as the logarithmic and ex-
ponential, that it can assume either convex or concave shapes,
depending on whether the value of the exponent, k, is larger or
smaller than unity. In the simulations, this value was varied sys-
tematically until the D/I ratio predicted by the simulated CVG
model was consistent with the mean ratio measured in the psycho-
physical experiments: 1.27. The results revealed that for this to be
the case, the exponent in the power-law function had to be about
1.85. Such an exponent results in a substantial deviation from
linearity in the shape of the psychometric function. This outcome
is inconsistent with the psychophysical results reported by Turner
and Nelson (1982) or Nelson and Freyman (1986) for frequency
discrimination and by Buus and Florentine (1991) for intensity
discrimination. (We are not aware of relevant experimental data in
the case of AM-rate discrimination).

Alternative Models

The observation that the CVG model cannot easily be reconciled
with the experimental data leads us to consider other types of
psychophysical models. The observation that all but one of the
mean D/I ratios shown in Figure 2 fall between the predictions of
the HT and CVG models suggests that listeners’ behavior in the D
and I tasks might be adequately captured by a model that combines
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some of the features of these two types of models. In this section,
we briefly describe two such models. The first was obtained by
appending a quantization stage to the CVG model; the resulting
model is referred to as the QG model. The second model is a pure
discrete-state model inspired by neurophysiological observations,
which suggests that the perception of stimulus changes may be
mediated at the neural level by the relative activations of neurons
that are selectively sensitive to increments or decrements, whose
spike-count output follows a Poisson distribution.

A QG Model

The idea of quantized sensory representations is not new. Fol-
lowing Boring (Boring, 1926), Stevens and colleagues (Stevens,
1972; Stevens et al., 1941; Stevens & Volkmann, 1940) and others
(Miller & Garner, 1944; Larkin and Norman, 1964) argued for a
quantum model of sensory discrimination. The QG model, which
we consider here, assumes an initial stage in which, as in the CVG
model, the sensory activity evoked by the stimuli is modeled as a
Gaussian-distributed random quantity along a continuous axis.
This first stage is followed by a second one, in which the contin-
uous sensory activity from the first stage is quantized. It is as-
sumed that the participant only has access to the output of the latter
stage; therefore, his or her decisions are based on an imperfect,
quantized representation of the stimuli. This idea is represented
schematically in Figure 5. Due to the quantization operation, the
decision space for this model is a discrete version of that for the
CVG model shown in Figure 1.

By varying the size of the quantization steps relative to the
magnitude of the internal Gaussian noise, one can generate pre-
dicted D/I ratios that range from 1 to 1.56, as shown in Figure 6.
This can be understood by considering that when the size of the
quantization steps is large relative to the magnitude of the internal
Gaussian noise, the QG model is essentially equivalent to a two-
state HT model. On the other hand, if the quantization steps are
made infinitely small, the QG model becomes equivalent to the
CVG model.

From this point of view, the HT and CVG models described in
earlier sections can be thought of as extreme cases on a continuum
going from two to an infinitely large number of possible internal
states. The results shown in Figure 2 suggest that human observers
stand between these two extremes: They behave as if their deci-
sions were based on a finite number of states, although more states
than assumed by the HT model. The simulation results shown in
Figure 6 indicate that in order for the QG model to predict a D/I
ratio equal to the mean D/I ratio measured experimentally (1.27),
the size of the quantization step (or quantum) must be between 2
and 3 times larger than the standard deviation of the internal
Gaussian noise. (Figure 5 was produced assuming a quantum size
equal to 3 times the standard deviation of the internal Gaussian
noise).

It is worth noting that Stevens and Volkmann (1940) and
Stevens (1972) reached a different conclusion regarding the rela-
tive size of the quantum, compared with other sources of noise
affecting the observer’s responses in sensory discrimination ex-
periments. These authors concluded that the quantum size was
probably smaller than that of the other sources of noise, explaining
why quantization effects are usually difficult to observe. Following
this line of reasoning, one might object that if, as indicated by our
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simulation results, the quantum size is several times the standard
deviation of the prequantization noise, this should produce visible
steps in psychometric functions for frequency and intensity dis-
crimination, whereas in most published reports of such functions,
such steps are not clearly apparent.'®> A possible explanation for
this lack of evidence for a quantization operation in psychometric
data is that the standard deviation of the additional sensory noise
introduced by the quantization operation is only 1/7/12 of the
quantum size. This means that even if the size of the quanta is
up to 3.5 times the standard deviation of the Gaussian sensory

I34

Figure 5. Schematic illustration of the sensory-observation process and
decision space for the quantized-Gaussian (QG) model. Top: This is a
schematic representation of the physical and sensory scales. A stimulus
with a certain value on a physical scale, x, evokes a sensory response on a
continuous sensory scale, y. As in the constant-variance Gaussian (CVG)
model, this sensory response is contaminated by Gaussian noise. However,
in the QG model, the observer only has access to a quantized representation
of the sensory activity, as represented by the discrete scale, g. In this
example, the size of the quanta was chosen to equal 3 times the standard
deviation of the Gaussian sensory noise. In addition, we purposefully chose
a case in which sensory activity on the continuous scale, y, falls close to the
border between two quanta, to illustrate the fact that a given stimulus value
does not always result in the activation of the same quantum. Bottom: This
is the two-dimensional decision space for the QG model. This can be
compared with the decision space for the CVG model illustrated in Fig-
ure 1. As in that figure, the situation illustrated is one in which an upward
change occurred in the first pair. Here, the probability of a correct response
is computed as a sum over quadrants P1 and P3 for the detection (D) task
and quadrants P1 and P2 for the identification (I) task. For quanta that are
cut through by one or two diagonals, decisions are determined by guessing.
In this example, the physical difference, A, between the two stimuli was set
to 2.1 times the standard deviation of the Gaussian sensory noise, so that
the proportion correct in the D task equals approximately .75.
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Figure 6. Detection/identification (D/I) ratio predicted by the quantum
model as a function of the quantum size relative to the standard deviation
of the prequantization noise. The vertical dotted line shows the relative
quantum size corresponding to the case of a quantization noise with a
standard deviation equal to that of the prequantization noise, as discussed
in the text. Pc = proportion of correct responses.

noise, the quantization operation will contribute less noise than
there already is in the system. Thus, a quantum size between 2
and 3 times larger than the standard deviation of the prequan-
tization noise, as indicated by our results, might not produce
detectable steps in psychometric functions, at least under usual
testing conditions.

To summarize, the simulation results indicate that D/I threshold
ratios comprised between 1.00 and 1.56 can be predicted by a
model based on the assumption that listeners only have access to
a quantized representation of Gaussian sensory observations. From
this point of view, the experimental data are consistent with the
general idea behind the psychophysical quantum theory (Stevens
& Volkmann, 1940).

A Neurophysiologically Inspired Poisson Model

The second model considered here is based on the idea (sup-
ported by experimental data, in the auditory domain as well as the
visual domain) that some neurons in the central nervous system
respond with an increased firing rate when a stimulus changes in
a given direction. Psychophysical observations reported by De-
many and Ramos (2005) provide strong evidence for the existence
of automatic and direction-sensitive frequency-shift detectors in
the human auditory system. This study showed that a sequence of
two pure tones differing in frequency and separated by a 500-ms
silent delay can elicit a percept of directional pitch shift, even
when the pitch of the first tone is not consciously audible.

12 Although Stevens and colleagues (Stevens, 1972; Stevens et al., 1941;
Stevens & Volkmann, 1940) did claim that under some specific experi-
mental conditions, linear steps are apparent in psychometric functions in
various visual and auditory perception tasks, this claim was questioned in
subsequent publications, on the basis of methodological considerations
(Corso, 1973; Green & Swets, 1966).
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The model that we propose here involves a neural increment
detector, which compares the two stimuli in a pair, whose mean
firing rate increases monotonically with the difference in intensity
or frequency, A, between these stimuli, but only if this difference
is positive (i.e., A > 0). For simplicity, we assume that when A is
relatively small, as is typically the case near discrimination thresh-
old, the mean firing rate of the detector increases linearly with A.
For negative physical differences (i.e., A < 0), the output of this
detector is distributed following the same distribution as for phys-
ically identical stimuli (i.e., A = 0), reflecting the fact that the
detector is insensitive to decrements. Furthermore, it is assumed
that the output of this detector can be modeled as a Poisson process
with a driving rate p, for identical stimuli or decrements, and p =
o + @A for increments (with o a constant). Poisson processes are
frequently used as an approximate model of neural spiking, and
accordingly, the Poisson distribution is commonly used as an
approximate model of the distribution of spike counts (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997).

In addition to this increment detector, the model contains a
decrement detector, which produces a Poisson-distributed output
with mean rate w, for A = 0, and mean rate . = p, + alAl for
A < 0. The difference between the outputs of these increment and
decrement detectors is used to decide whether a change occurred,
and if a change did occur, to decide in which direction it was.
Accordingly, the decision space for this model resembles that for
the Gaussian and QG models, in that the decision variables are
differences between random variables derived from the first and
the second pairs; however, instead of having a Gaussian or QG
distribution, here, the decision variables have a distribution given
by the difference between two Poisson-distributed random vari-
ables. Examples of such Poisson-difference distributions are
shown in Figure 7. The two panels in this figure show how the
decision variables are distributed for same trials (upper panel) and
different trials (lower panel), assuming a Poisson process with a
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Figure 7. Example probability distributions for the difference between
observations decision variable in the Poisson model. The two panels in this
figure show how the decision variables are distributed (A) on same trials
and (B) on different trials. These distributions are for a Poisson process
with a mean spontaneous rate, p,, of 0.8 spikes per second and a mean
evoked rate of 2.9 spikes per second.
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mean spontaneous rate, w,, of 0.8 spikes per second and a mean
evoked rate of 2.9 spikes per second. As can be seen, the two
distributions have different spreads; this results from the fact that
the variance of a Poisson-distributed random variable increases
with the mean.

The critical variable, in this model, is the mean spontaneous
rate, p,, of the increment and decrement detectors; for simplicity,
this rate is assumed to be the same for the two types of detectors.
As the mean spontaneous rate increases, and the mean evoked rate
increases beyond it, the probability distribution of the difference
between the output of the two types of detectors tends toward a
Gaussian distribution and the D/I predicted by this Poisson model
tends toward that of the CVG model. In Figure 8, we show how the
D/I threshold ratio predicted by the Poisson model depends on the
mean spontaneous rate, p,. For each value of ., we determined
the value of the evoked rate, wp, which yielded a predicted
proportion of correct responses of .75 in the D task, and the value of
evoked rate, ., corresponding to the same proportion correct in the I
task. The D/I ratio was then calculated as (\, — wo)/(y — R)- These
results confirm that this Poisson model can predict D/I ratios lower
than 1.56, and they reveal that such ratios result from relatively
low spontaneous rates: D/I ratios below 1.4 require a mean spon-
taneous rate of approximately 1 or less.

Receiver Operating Characteristics for D: A Further Test
of the Models

The above simulation results reveal that a discrete Poisson
model, or a hybrid (continuous-discrete) QG model, provides a
more satisfactory account of the empirical D/I threshold ratio data
shown in Figure 2 than the HT and CVG models. However, it may
be argued that the former two models are ad hoc and that although
they originate in earlier work independent from the present one
(e.g., Green and Swets, 1966; Egan, 1975; Kaernbach, 1991a),
they were only invoked here because it was suspected that they
would resolve the particular problem under consideration. There-
fore, it was desirable to consider additional experimental data,
besides D/I ratios, to further evaluate whether the Poisson and QG
models provide more adequate models of how sensory changes are
perceived.

Receiver operating characteristics (ROCs), which represent the
probability of a false alarm as a function of the probability of a hit
for different values of the criterion (Green & Swets, 1966; Egan,
1975), provide such data. A landmark of the Poisson model is that
it can account for experimental findings of asymmetric ROCs in
yes—no signal-D tasks (Egan, 1975; Kaernbach, 1991a; Swets,
Tanner, & Birdsall, 1961). This stems from the Poisson distribu-
tion being asymmetric and from its variance increasing with its
mean. In contrast to the Poisson model, the CVG model predicts
symmetric ROC curves, at least for the yes—no D task. Therefore,
ROC:s provide a way of distinguishing the Poisson model from the
CVG model.

One complication, which must be taken into account here, stems
from the fact that we are not dealing simply with detection, but
with D. More precisely, we are dealing with the detection of
discrete sensory changes. The paradigm of choice for measuring
this ability is not the yes—no paradigm, for which the above
distinction between CVG and Poisson models has been estab-
lished, but rather the two-interval, same—different (2IAX) para-
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Figure 8. Detection/identification (D/I) ratios for decisions based on
Poisson increment and decrement detectors as a function of the mean
spontaneous rate at the output of the detector. Pc = proportion of correct
responses.

digm. For that paradigm, the CVG model can actually predict
asymmetric ROCs in some situations (see, e.g., Dai et al. 1996;
Hautus, Irwin, & Sutherland, 1994). This is the case, in particular,
for experiments in which the stimuli are roved over a relatively
wide range across trials, as commonly done to force listeners to
compare the two stimuli presented on each trial rather than rely on
a long-term memory trace. In this situation, the ROCs predicted by
the CVG model are slightly asymmetric about the minor diagonal
(Dai et al. 1996)."* This makes the task of distinguishing between
the CVG model and the Poisson model less straightforward, be-
cause asymmetric ROCs are now expected for both models
(Kaernbach, 2008). Fortunately, there is a simple way to overcome
this problem. The CVG model only predicts asymmetric ROCs in
the 2IAX paradigm if the direction of the change is not known in
advance by the observer. If the observer knows the direction of the
change in advance, the asymmetry is eliminated. This is because
knowing the direction of the change eliminates the need for an
optimal CVG observer to base his decisions on the absolute value
(or any other nonmonotonic transformation) of the difference
between the sensory observations evoked by the two stimuli pre-
sented on a trial. Instead, the CVG observer can now decide
between same and different on the basis of the signed (as opposed
to the unsigned) difference between the two observations. This
decision strategy is formally equivalent to the differencing strategy
for the 2I2AFC paradigm, which we mentioned earlier, except for
the placement of the criterion: Assuming a balanced design (with
equal a priori probabilities and symmetric payoffs), the optimal
placement of the criterion in the 2I2AFC paradigm corresponds to
the origin (zero) of the decision axis; in contrast, in the direction-
known 2IAX paradigm, the optimal placement of the criterion
corresponds to a positive value for trials on which the direction of
the change is upward,” and to a negative value for trials on which
the direction is downward. In both cases, the criterion should be
positioned halfway between the means of the difference distribu-
tions corresponding to same and different trials. Therefore, if in a
2IAX experiment the change between the two stimuli in the different
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pairs always has the same direction, and listeners are aware of this
fact, ROCs should be symmetric under the CVG model. Because, on
the other hand, the Poisson model still predicts asymmetric ROCs,
this provides a way of distinguishing between the CVG model and the
Poisson model in a D setting.

The above rationale led us to analyze ROC data obtained in a
2IAX intensity-discrimination experiment in which the change in
intensity between the two tones presented on different trials could
only be downward. Note that intensity is the dimension for which
we previously found D/I ratios to be the lowest, on average (Figure
2), consistent with a Poisson process having a relatively low mean.
Therefore, it is for this dimension that one should expect the most
asymmetric ROC curves, if the Poisson model accurately describes
the D process. This provides ideal conditions for testing which of
the two rival models, CVG and Poisson, is most consistent with
empirical ROCs.

Listeners rated their certitude regarding the occurrence of a
change between the stimuli with six response categories: “very
sure yes,” “sure yes,” “maybe yes,” “maybe no,” “sure no,” and
“very sure no.” A multiple-response monetary payoff matrix was
used to entice listeners to vary their criteria for deciding between
the different response categories over a relatively broad range,
going from most conservative (i.e., trying to limit the number of
false alarms) to most liberal (i.e., trying to achieve a high hit rate).
The ROC data measured across five listeners by this technique are
shown as symbols in Figure 9. The best-fitting predictions of the
CVG model and Poisson model are shown as dashed and solid
curves, respectively. As can be seen, the best-fitting asymmetric
ROC produced by the Poisson model provides a better fit to the
empirical data than does the best-fitting symmetric ROC produced
by the CVG model (model comparison: log of Poisson/CVG
likelihood ratio = 75.5; p < .0001).'* It is interesting to note that
the best-fitting Poisson model had a mean spontaneous rate, .0, of

LT3 2 <«

approximately 0.8, and an evoked mean rate of approximately 2.6.
Based on the data shown in Figure 8, which illustrate how the
mean D/I ratio predicted by the Poisson model depends on the
mean spontaneous rate, a mean spontaneous rate of 0.8 corre-

13 Why the CVG model predicts asymmetric ROCs in 2IAX experiments
with roving can be understood by considering that in this situation the
optimal decision rule is based on the absolute value of the difference
between the sensory observations; this is the so-called differencing strategy
for the 2IAX paradigm. Whereas the distributions of the original sensory
observations are equal-variance Gaussian, the distributions of the absolute
value of the difference between the observations on same and different
trials are not.

!4 This p value was computed as p = 1 — K(x, n), where K(x, ) denotes
the cumulative chi-square distribution with n degrees of freedom, evaluated
at x. Here, x was equal to 2log(\,/\,), with A, and A\, denoting the
likelihoods of the data under the two considered models: Poisson and CVG,
respectively. The number of degrees of freedom, n, was calculated as the
difference between the number of free parameters of the CVG model, 1
(d"), and the number of degrees of freedom for the Poisson model, 2 (mean
and evoked spontaneous rates); thus, n was equal to 1. This calculation
relies on a convenient result in probability theory, which says that the
statistic, 2log(\,/\,), or twice the logarithm of the likelihood ratio, is
asymptotically chi-square distributed with degrees of freedom equal to the
difference in the number of free parameters of the two models being
compared.
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Figure 9. Receiver operating characteristics (ROCs) predicted by the
constant-variance Gaussian (CVG) and Poisson models compared with
human data. The crosses show mean hit and false-alarm probabilities
measured in five human listeners performing a 2IAX intensity-
discrimination task in which the direction of intensity changes (downward)
was constant and known to the listener (see text for details). The dashed
curve shows the best-fitting ROC curve produced by the CVG model,
which under such testing conditions can only yield symmetric ROCs. The
solid lines indicate the best-fitting ROC obtained with the Poisson model
described in the text. As can be seen, the latter predicts an asymmetric
ROC, which more accurately fits the data than does the symmetric ROC
produced by the CVG model.

sponds to a mean D/I ratio slightly below 1.4. This value is
somewhat larger than the mean empirical D/I ratio computed from
the data displayed in Figure 2, which was 1.27. However, in view
of the inter- and intraindividual variability in the psychophysical
data, our estimates of the Poisson-model parameters derived from
the D/I data are in reasonably good agreement with those derived
from the ROC data.

So far, this section has focused exclusively on the Poisson and
CVG models. One remaining question is whether the ROC data
can also be used to distinguish the Poisson model from the other
two models that were shown earlier to account for the empirical
threshold-ratio data, namely the modified Gaussian model with
fluctuating bias, and the QG model. The former is easy to rule out
because it assumed that a fluctuating bias was present only in the
I task. For the D task, the predictions of that model are exactly the
same as those of the CVG model. Consequently, we turn our
attention to the QG model. To investigate whether and how well
this model could explain the ROC data, we ran simulations with
different quantum sizes (relative to the magnitude of the prequan-
tization internal noise), until the best possible match between
measured and predicted ROCs was achieved. The results of this
analysis revealed that the QG model could produce asymmetric
ROCs, if the quantum size was sufficiently large. This can be
understood by considering that as the quantum size increases, the

Gaussian internal-noise distribution is sampled more and more
coarsely. For very large quantum sizes, the number of relevant
internal states in the QG model is relatively small, yielding ROCs
with visible edges. Occasionally, depending on the exact relation-
ship between the quanta and the prequantization noise, the main
edge in the predicted ROC falls below the minor diagonal, as
observed in the empirical ROC data. However, this requires a
specific relationship between the quanta and the prequantization
noise; in practice, this requirement is unlikely to be met consis-
tently. Moreover, we found that in order to account for a substan-
tial departure from symmetry in the predicted ROCs, the quantum
size must be very large compared with the standard deviation of
the prequantization noise. Specifically, our simulation results re-
vealed that in order to account for the asymmetry observed in the
empirical ROC data in Figure 9, the quantum size must be roughly
8 times larger than the standard deviation of the prequantization
noise. This factor of 8 is considerably larger than the factor that we
arrived at earlier on the basis of empirical D/I ratios, which
indicated an average quantum size at most 3 times larger than the
prequantization noise. A quantum size § times larger than the
prequantization noise is inconsistent, not only with this earlier
result, but also with other data in the literature (cf. our earlier
discussion of the consequences of a large quantum size on psy-
chometric functions).

To summarize the results and arguments presented in this sec-
tion, the Poisson model correctly predicts that ROCs for the
detection of sensory changes having a fixed and known direction
are asymmetric. In addition to being qualitatively consistent with
empirical ROC data, the predictions of this model are in better
quantitative agreement with the data than are those of the various
other models considered in this work. Further study is required to
determine whether these findings, which concern changes in sound
intensity, hold for other dimensions of auditory perception and for
other sensory modalities. However, combined with our previous
demonstration that the Poisson model can account for the observed
relationship between D and I thresholds, these results pinpoint this
model as a more adequate description of the perceptual and/or
neural processes involved in the perception of simple sensory
changes than the HT, CVG, or QG model.

Conclusions

A statistical analysis of detailed measurements of thresholds for
the detection of simple changes in auditory stimuli and thresholds
for the identification of the direction of these changes measured
under identical stimulus conditions in the same listeners revealed
that the relationship between these thresholds departed signifi-
cantly from the predictions of two common psychophysical mod-
els, the CVG model and the HT model. However, remarkably, for
the three acoustic dimensions studied (intensity, frequency, and
AM rate) and for all but one of the 11 listeners tested, the mean
measured D/I threshold ratios fell between the predictions of these
two models. This led us to consider the possibility that a hybrid
model combining early Gaussian sensory observations with a later
quantization stage (the QG model) or a discrete-state model with a
larger number of internal states than the basic HT model (the
Poisson model) might adequately capture the behavior of human
listeners in the D and I tasks. This possibility was confirmed by
simulation results: Both the QG and Poisson model were able to
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produce D/I threshold ratios between 1.00 and 1.56, as observed in
humans. To further evaluate the different models, we analyzed
ROC data collected under conditions in which the direction of the
sensory change was fixed and known to the listener. These ROC
data were best accounted for (both qualitatively and quantitatively)
by the Poisson model.

Gaussian models have usually been favored over discrete-state
models because of their ability to fit empirical ROC curves better
than their historic competitor, the dual-state HT model. However,
as noted by Green and Swets (1966), ROCs typically contain a
handful of data points, and discrete-state models with at least as
many internal states as the number of data points can fit such
empirical ROCs as well as the Gaussian model. The QG model and
the Poisson model described in this article fall into this category.
The Poisson model presents the advantage that it can accommo-
date asymmetric empirical ROCs (Kaernbach, 1991a). Future stud-
ies involving detailed measurements of ROCs for the detection of
changes in sound intensity or frequency under stimulus conditions
similar to those considered here may provide further arguments for
or against this model.

Another argument that is often used to justify the Gaussian
assumption is that by the central-limit theorem, the distribution of
the sum of a large number of random variables tends toward a
Gaussian. However, this statistical theorem applies specifically to
large numbers of statistically independent sources of variability
combined additively. Research on the neural underpinnings of
perception conducted during the past decades indicates that the
neural responses that are combined to arrive at a perceptual deci-
sion are usually correlated rather than independent (Averbeck,
Latham, & Pouget, 2006; Zohary, Shadlen, & Newsome, 1994).
Moreover, neural responses may be combined in complex nonlin-
ear ways rather than additively. The view that perception ulti-
mately relies on discrete quantities is consistent with a wealth of
neurophysiological observations, including, in particular, findings
indicating that perceptual decisions may be based on the correlated
spike counts of a relatively limited number of neurons (Shadlen &
Newsome, 1998). In this respect, the Poisson model of D and I
described here is particularly attractive because of its neurophys-
iological plausibility and simplicity.

Another argument in support of the QG and Poisson models
stems from the introspective fact that physically identical sounds
are often perceived as identical. According to a model in which
sensory observations are continuous and contaminated by Gauss-
ian internal noise, the sensory observations evoked by two phys-
ically identical stimuli have an infinitely small probability of being
exactly identical, due to the influence of internal noise. By con-
trast, in discrete-state models, the probability that two physically
identical stimuli evoke strictly identical percepts is not negligible.
To reconcile the CVG model with introspection, one would have
to assume that the participant does not have conscious access to the
true sensory observations but does have access only to the deci-
sions that were reached after comparing these observations with an
internal criterion. This is tantamount to assuming that the decisions
of the participant rest on a quantized (discrete) representation of
the stimuli.

On the basis of these results and considerations, we suggest that
discrete-state models, and in particular, a Poisson model, describe
more adequately than does the CVG model the processes involved
in the perception of simple changes in auditory stimuli. Of course,
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it would be interesting to know whether such a conclusion is valid
for auditory dimensions not considered here (for instance, sound
localization) and to see whether a similar conclusion can be drawn
for other sensory modalities. It is therefore hoped that the analysis
described in this article will spark further empirical studies con-
cerning, especially, the relationship between D and I.
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