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Simple adaptive testing with the weighted 
up-down method 

     CHRISTIAN KAERNBACH      
Unite Inserm, Bordeaux, France 

This paper proposes a method for adaptive testing that is less complicated than the commonly used transformed up-down 
methods (l up 2 down, l up 3 down, etc.). In addition, the weighted up-down method can converge to any desired point of the 
psychometric function. The rule is very simple: Each correct response leads to a decrease in signal level, each incorrect 
response to an increase. The only difference from the simple up-down method (l up l down) is that the steps upward and the 
steps downward are of a different size. The straightforward construction of the novel procedure pays off in efficiency and 
stability: A Monte Carlo Simulation reveals a definite advantage, though small, of the weighted up-down method over the l-
up-2-down rule. 

 
 
The simple up-down method (l up l down) converges to the 

X50 point of the psychometric function. This is not appropriate 
for tasks in which the chance performance is high. For two-
interval forced-choice (2IFC) tasks (chance performance: 
50%), X^ would be the halfway point. This point would be the 
most natural choice for a threshold estimate. 

With transformed up-down methods (Levitt, 1971), level 
changes depend on the outcome of two or more of the 
preceding trials. For instance, the level is increased with each 
incorrect response and decreased after two successive correct 
responses (l up 2 down, or the 2-step rule). The steps upward 
and the steps downward are of equal size. For each rule, there 
exists a distinct convergence point (e.g., X70.7 for the 2-step 
rule, X79.4 for the 3-step rule). Unfortunately, there exists no 
transformed up-down rule for X75. 

In many studies, transformed up-down methods have been 
compared with other adaptive procedures (see, e.g., 
Kaembach, 1990, or Kollmeier, Gilkey, & Sieben, 1988, and 
references cited therein). In the present paper, I propose a 
novel modification of the simple up-down method that is 
much simpler than transformed up-down methods. 
Furthermore, it is more versatile and slightly more efficient 
than transformed up-down methods. 

The restriction to equal step sizes for both directions is 
undesirable. If one drops it, the resulting procedure be-comes 
very simple. The weighted up-down method pro-posed here 
can converge to any desired point on the psychometric 
function. In the first section, I will derive this algorithm and 
discuss its construction in relation to transformed up-down 
methods. In the next section, I compare the efficiency and the 
optimal step size of the 2-step rule 
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with the weighted up-down method for X75, by means of a 
Monte Carlo Simulation. 

THE WEIGHTED UP-DOWN METHOD 

The rule is quite similar to the simple up-down rule: 
Each correct response leads to a decrease in signal level, each 
incorrect response to an increase. But the step size, Sup, for 
upward steps may now differ from the step size, Sdown, for 
downward steps. The equilibrium condition for convergence 
point Xp is 

 
For X75, it follows that Sup/Sdown =1/3. The rule for a 
convergence to the X75 point would thus read: Decrease the 
Level l step after each correct response, and increase it 3 steps 
after each incorrect response. It is illuminating to compare this 
rule with the 3-step rule. Let us denote a sequence of trials as, 
for example, ++—, with + standing for a correct response and 
~ Standing for an incorrect response. With transformed up-
down methods, the possible outcomes of trials or series of 
trials are categorized into two groups: the down group (leading 
to a decrease in signal level) and the up group (leading to an 
increase). For the 3-step rule, the down group contains + + +, 
and the up group contains -r- + —, + —, and —. Let us 
assume that the actual step size is 3 dB. The sub-sequent 
adjustment would then follow column A of the scheme in 
Table l. 

It does not seem fair to treat + + - just as -, that is, not to 
acknowledge the first two correct responses of + + -. It would 
be more logical to react as in column B: 
Sequences of the up group lead to a level increase that 
depends on the number of correct responses included. Column 
B corresponds to the reaction of the weighted up-down 
method for X75 (+ counts -1 dB, and - counts +3 dB). And 
whereas the 3-step rule waits for the completion of a trial 
series, the weighted up-down method reacts immediately, 
because the level adjustments directly 
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                                             Table1 
    Comparison of Transformed and Weighted Up Down Rules 

Trials Group A B 

+++ down -3 dB -3 dB 
++- up +3 dB +1 dB
+- up +3 dB +2 dB
- up +3 dB +3 dB 

 

follow the trials that have set them off. This straightforward 
structure makes the procedure faster and more stable. 

An anonymous reviewer brought my attention to the article 
of Tyler and Gorea (1986), who used a quite similar method. 
Incorrect responses led to an upward step, and correct 
responses had a 33% chance to lead to a down-ward step. 
Sixty-seven percent of the correct responses led to no change 
in signal level. Tyler and Gorea considered their method 
comparable to "l up 3 down," and they concluded that it should 
converge to 79% correct responses. In reality, however, it is 
comparable to the weighted up-down method described above, 
and it con-verges to 75% correct responses. The additional 
arbitrary randomness should make it slightly less efficient. It 
could be an alternative in situations in which fractional Steps 
are hard to produce. 

MONTE CARLO SIMULATION 

The psychometric function was assumed to be a tanh-like 
function. It leveled off at 1.0 for high intensities and at 0.5 for 
low intensities (see Figure l): 

 
This could, for example, describe the percentage of correct 
responses in a 2IFC experiment. The spread of this 
psychometric function could be defined as X90-X60, a 
difference that would then amount to l .4. The signal level was 
set at 2.5 (p = .9967) at the beginning of each track. The first 
two reversals were discarded. At every even number of 
reversals, the median intensity of the reversal points was 
calculated. These so-called midrun estimates 
 
 
 
 
 
 

 
 
 
were used here as they are used commonly. Any other analysis 
(e.g., mean of the reversals) would work as well. After 24 
further reversals, the track was stopped. Ten thousand tracks 
were simulated for each condition. The Simulation procedure 
is nearly identical to that used by Kaembach (in press), which 
was verified by comparison with experimental data. 

The trial number n was set to 8 at the last discarded trial—
that is, at the second reversal. This was done to take into 
account the initial phase. In the initial phase, the rules are 
usually modified, and other step sizes are applied. A careful 
choice of the starting level should allow for reaching the 
threshold region (more precisely, the second reversal) within 8 
trials. 

To evaluate the efficiency of an adaptive procedure, one 
must determine the error as a function of the trial number. The 
error consists of two parts: the statistical error, corresponding 
to the fluctuations of the estimates around their mean value, 
and the systematic error, corresponding to the systematic 
deviations of the mean values from the convergence level, 
generally in the direction of the starting point. The total error is 
equal to the orthogonal sum: E2

total= E2
stst + E2

sys. It behaves at 
first approximation like 1/√n. The normalized total error 
Etotal(n) √n  moves much less as function of n. This 
construction differs from the sweat factor used by some 
authors (see, e.g., Tayior & Creelman, 1967), in that it does not 
claim to be independent from the track length and covers the 
systematic error too. It is convenient for the comparison of 
slight differences in the efficiency of adaptive procedures. 

Figure 2 shows the normalized total error as a function of the 
trial number n. The solid lines correspond to the weighted up-
down rule for X75, and the dotted lines correspond to the 2-step 
rule. For the weighted up-down method, the step sizes given in 
the figure legend correspond to the geometric mean 5w of 5up 
and 5down: 
 

 
 

For both procedures, the optimal step size is 0.23 (cir-cles). 
This is about one sixth of the spread of the psycho- 
 
 
 

 
Figure l. The psychometric function of the Simulation model. The spread can be 

defined as X90 –X60. The starting point was at 2.5. 
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Figure 2. The normalized total error, as a function of the trial number. The first two reversals 
were discarded. The single data points represent stop criteria after 2, 4, 6, ... 24 further 
reversals. The trial number corresponds to the mean number of trials required to get the 
respective number of reversals. 

 

metric function (see Figure l). Smaller step sizes 
produce markedly more errors for short tracks, which fail 
to reach the threshold region (systematic error). Bigger 
step sizes are ideal for short tracks, because they reach the 
threshold region quickly, but they compare badly for long 
tracks (random walk). Step sizes bigger than optimal are 
less critical than step sizes that are too small. With the op-
timal step size, the weighted up-down method produces 
about 5% less error; or, for a given precision, it needs 
about 10% less experimentation time than does the 1-up-2-
down method. Moreover, the novel method is more stable: 
The deviations from the optimal step size in the range of 
about 30% are much better dealt with by the weighted up-
down method. 
 
 

CONCLUSION 

The weighted up-down method is markedly simpler than 
the transformed up-down methods. This makes it easy to 
implement. In addition, the level changes depend only on 
the outcome of the last trial. This may ease the 
implementation of interleaving tracks, and—if they are 
given feedback—this may help the subjects to understand 
the tracks better. Finally, the uncomplicated construction 
of this procedure pays off with a faster and more stable 
convergence toward the desired point on the psychomet-
ric function. 

The weighted up-down method is not restricted to 
forced-choice tasks. For instance, just like 21FC tasks, a 
series of yes/no tasks with 50% noise presentations will 
allow for a chance performance (a probability of correct 
 

 answer) of 50%. The weighted up-down method, then, 
corresponds to the symmetric SIAM procedure described by 
Kaernbach (1990). 

An experimental verification of the efficiency gain of the 
weighted up-down rule has yet to come. Since this rule does 
not introduce essential new elements to adaptive 
psychophysics, but only reduces the complexity of the 
applied rule, it is to be expected that human subjects would 
work at least as efficiently with it as with transformed up-
down methods. The efficiency gain is anyhow not extreme 
(5% less error, or 10% more speed), so that the conceptual 
advantages of the weighted up-down rule are more 
important. 
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