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Adaptive threshold estimation
with unforced-choice tasks

CHRISTIAN KAERNBACH
Universitéat Leipzig, Leipzig, Germany

This paper evaluates an adaptive staircase procedure for threshold estimation that is suitable for
unforced-choice tasks—ones with the additional response alternative don’t know. Within the frame-
work of a theory of indecision, evidence is developed that fluctuations of the response criterion are
much less detrimental to unforced-choice tasks than to yes/no tasks. An adaptive staircase procedure
for unforced-choice tasks is presented. Computer simulations show a slight gain in efficiency if don’t
know responses are allowed, even if response criteria vary. A behavioral comparison with forced-
choice and yes/no procedures shows that the new procedure outdoes the other two with respect to re-
liability. This is especially true for naive participants. For well-trained participants it is also slightly
more efficient than the forced-choice procedure, and it produces a smaller systematic error than the
yes/no procedure. Moreover, informal observations suggest that participants are more comfortable

with unforced tasks than with forced ones.

Adaptive procedures for threshold estimation (Levitt,
1971; Treutwein, 1995) are used in the attempt to find the
signal level corresponding to a prescribed response prob-
ability. With the use of these procedures, the signal level
is decreased after a correct or yes response and is in-
creased after an incorrect or no response. With these pro-
cedures, single-stimulus yes/no or N-alternative forced-
choice (NAFC) tasks are usually employed.

For yes/no tasks, the threshold is often defined as the
signal level for which the probability of yes responses is
50%. The simplest way to arrive at this point is the simple
up—down rule introduced by Georg von Békésy: There the
signal level is decreased one step after each yes response
and increased one step after each no response. The well-
known drawback of this procedure is its strong depen-
dence on the participant’s maintaining a stable response
criterion. Fluctuations of the response criterion will lead to
large fluctuations in the threshold estimates.

To circumvent this problem, one can employ the NAFC
task. The threshold is then often defined as the signal level
at which the probability for correct responses is halfway
between perfect performance and chance performance
(i.e., 75% for two-alternative forced-choice [2AFC] tasks).
Levitt (1971) summarized several rules that converge to
response probabilities close to 75%. Another effective way
to find this signal level is the weighted up—down procedure
(WUD; Kaernbach, 1991), in which the simple up—down
rule is modified. Here the signal level is decreased one
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step after each correct response and increased three steps
after each incorrect one. The theoretical convergence level
of this procedure is 75%. Other ratios between upward and
downward step size lead to other asymptotic response
probabilities. It should be noted that the claimed theoreti-
cal convergence points of staircase procedures may not be
attained under all circumstances (see, e.g., Garcia-Pérez,
1998).

Such adaptive procedures are designed to concentrate
data sampling around some interesting region of the psy-
chometric function and to avoid data sampling at too high
or too low signal levels. Consider a situation where the sig-
nal intensity is far from that region of interest. For high
signal intensities, where the response probability is close
to one, both yes/no and forced-choice procedures lead to
a quasi-deterministic movement of the adaptive run to-
ward the region of interest of the psychometric function.
Thus, given the size, of the separation (between the mo-
mentary position and the region of interest) and the step
size, one can predict the number of trials necessary before
the region of interest is reached. For low signal intensities,
only yes/no procedures show such a deterministic drift,
whereas forced-choice procedures lead to random walk
behavior with an average movement toward the region of
interest. This stochastic behavior of parts of the adaptive
run leads to stochastic variations of the threshold estimate.
This may explain why, for some participants, yes/no pro-
cedures are sometimes found to be superior to forced-
choice ones.

Another possible difficulty with forced-choice tasks is
that at low signal intensities the participant is often truly
uncertain about the correct answer. The fact of being
forced to make a choice even when one does not have the
slightest idea which response is correct may introduce an
uncomfortable aspect to this task. This may be of special
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importance in situations in which the participant is con-
fronted for the first time with such a method (e.g., as a pa-
tient in a clinical study), or where it is infeasible to dispel
the reluctance of the participants to act “randomly” be-
cause it would require too much explanation and might
even reduce the confidence of the participants in the seri-
ousness of the investigation.

An unforced-choice task with the additional response
alternative don’t know appears to bypass both problems.
The participant is not forced to give an answer when he or
she simply does not know one. The probabilistic behavior
of adaptive runs (for a possible rule, see below) at low sig-
nal intensities is also reduced insofar as the participant
makes use of the don’t know response at these intensities.
But there is a price. Unforced-choice tasks reintroduce a
criterion that not only can differ from participant to par-
ticipant, but might vary among, or even within, runs. Given
that a major reason for using forced-choice tasks was its
not requiring a criterion, does it make sense to reintroduce
one by giving the participant the additional choice alter-
native don’t know?

The present study demonstrates that the response crite-
rion involved in unforced-choice tasks has quite different
effects from that involved in yes/no tasks: It is less detri-
mental in the sense that its variations do not induce large
variations of the threshold estimate, and it does not in fact
reduce the efficiency of the adaptive procedure. More-
over, the tendency to have more deterministic behavior for
low signal intensities increases the efficiency of the pro-
cedure, and the gain in comfort makes it an ideal proce-
dure for clinical settings.

In the following sections, four things are done: (1) a sig-
nal detection theory model of unforced-choice tasks is
presented, (2) an adaptive method, unforced weighted up-
down (UWUD), that specifies level adaptations for each
of the three response types of unforced-choice tasks is in-
troduced, (3) Monte Carlo simulations of adaptive runs
using forced- and unforced-choice tasks are presented,
and (4) behavioral data of 6 human participants for yes/no,
forced-choice, and unforced-choice tasks are reported.

Signal Detection Theory of
Unforced-Choice Tasks:
A Theory of Indecision

Signal detection theory models are used to explain re-
sponse probabilities in both yes/no and forced-choice
tasks (for a review, see Macmillan & Creelman, 1991).
The Gaussian model of signal detection with equal vari-
ances (Green & Swets, 1974) is considered by many to be
a good first-order approximation, and it is in wide use.
According to this model, the stimuli elicit internal states
on a one-dimensional decision axis, distributed following
Gaussian normal distributions. The participant in a yes/no
task has to fix a criterion on this decision axis and reply
yes for all events greater than this criterion (producing
hits, but also false alarms); whereas, in a forced-choice
task, the participant need only report the interval or spa-
tial region that elicited the greatest event.

In an unforced-choice task, the participant has to decide
whether to decide at all. Just as with optimal decision
strategies, an optimal indecision strategy should be based
on Bayesian logic. Each trial of an N-alternative task cor-
responds to a set € of internal states e;, i = 1...N, Gauss-
ian distributed ¢, ; with variance of one. The distribution
is centered around mean value 1 = 0 for noise stimuli and
around p = d’ for signal stimuli. Let k be the pointer to the
greatest internal representation. If answering at all, the
participant will answer correctly if and only if the internal
state e, corresponding to the signal stimulus is the great-
est of all g; (i.e., if k is a good clue because e, = ¢,). The
optimal indecision strategy would be to maximize the
probability p(D) to decide in this case [i.e., maximize
p(D|e, = e,)] and to minimize the probability p(D|e, #
e,) to decide in those cases where k is an invalid clue.
These two probabilities correspond to the hit rate and false
alarm rate of decision theory. Please note that, in contrast
to decision theory, these two probabilities cannot be assessed
directly because the internal states € are not accessible.

Just as in decision theory, optimal indecision strategy is
based on the calculation of the probabilities for the condi-
tions of the conditional response probabilities p(D | e, = &)
and p(D|e, # e,): The participant wants to know the prob-
ability that the clue is a good one [i.e. p(e, = €,)]. The ac-
tual sete of all N internal states is helpful: Certain com-
binations of internal states make it more plausible that
ey = &, and others make it less plausible. The task is there-
fore to calculate p(e, = e,|€).Following a Bayesian ap-
proach, this can be done by calculating the probability
densities p(€ | e; = &) that a specific set € of internal states
results from a trial where a certain stimulus j was the sig-
nal stimulus:

P(E| € = &)= ¢d',1(ej ) El_lizl..N,i¢j $oa(e). (1)

Here ¢(x) denotes the density of the normal distribu-
tion around internal state x. Please note that knowledge of
d' is required in order to evaluate p,. If the participant
does not know the true value of d’, he/she has to operate
with an estimate d'Uinstead. Given equal a priori proba-
bilities p(e; = ;) = 1/N, the a posteriori probability to an-
swer correctly if answering k is then

p(é I ek = es) . (2)
Y1 PEe =€)

This probability is greater than or equal to 1/N. The op-
timal indecision strategy is to base the decision of whether
to decide at all on this probability, or on the likelihood
ratio po, /(1—Peor). Which is monotonically related with
Peor- The participant specifies a “safety margin” dand re-
fuses to designate the stimulus with the highest internal
representation if p,,, is not larger than 1/N + &. The optimal
value of J depends on the costs for the possible response
types (i.e., correct, incorrect, and don’t know responses).

Let us consider the special case N = 2. Suppose the par-
ticipant perceives event e; from the first stimulus and
event e, from the second stimulus. The a priori probabil-

pcor = p(ek = es |é) =



ity p(e; = &) is .5. In a forced-choice task, the participant
responds “first stimulus™ if e; — e, > 0 and “second stim-
ulus” if e; — e, < 0. This strategy leads to the correct an-
swer whenever the difference e, —e,, is positive (i.e., when-
ever the event elicited by the signal is greater than the
event elicited by noise). Given the above distributions of
e, and e, the distribution of e,— e, is Gaussian ¢ ,, which
is centered around d' and with variance two (i.e., the stan-
dard deviation o = V2, , see Figure 1A). The probability
of a correct response given only order information is equal
to the probability that e; — e, > 0 (Green & Swets, 1974):

P(ex =eslec >e) :f:‘i’d',z,

where k denotes the pointer to the greater internal state,
and | the pointer to the smaller one. Given the exact val-
ues of e; and e, and full knowledge of d', the participant
can calculate the a posteriori probability for a correct re-
sponse much more precisely:

pcor = p(ek = es Ié)
Pqr1(e)Po1(8))

) P 1(e)Po1(e1) +Por(e)Pgra(e))

_ 1
1+e"@e)d ' )

Obviously Peor is monotonically related to (e, —e) - d’ =
|e; —e,|-d'. For N = 2, the optimal indecision strategy
(i.e., to decide only if p,,, > 1/N + &) corresponds to de-
termining an indecision criterion, C: The participant se-
lects the don’t know button if and only if |e;—e, |- d' <C,
with the relation between C and J being one-to-one on
their domain of definition (0 = 6<1/2,0 = C). Onthee,
— e, axis, this strategy corresponds to deciding whether
| e;—e,|<c=C/d', where c is the effective indecision cri-
terion. It depends on d' for a given value of . Figure 1A
illustrates the optimal indecision strategy for the case
N=2,d'=1,andc=1.

Figure 1B shows decider operating characteristics
(DOC) for 2AFC tasks for different values of d'. The
probabilities that represent the coordinates can be derived
from Figure 1A:

[9s02

p(Dle, =€) :;7,
[9d 2
0

[9a 2
p(D e #eg) == @
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Although derived from symmetrical distributions, the re-
sulting DOC:s are slightly asymmetric.

Forced-choice tasks are often considered to be free of
an internal response criterion. The additional response al-
ternative don’t know reintroduces a response criterion that
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can vary as a function of time or across participants. In
order to compare the performance for different values of
the criterion, one has to specify a quantity that serves as a
performance index. In an N-alternative unforced-choice
task, an obvious quantity is the extrapolated correct-
response probability Pecor = Peor + Pynsure/ N, Where peg is
the correct-response probability, and pne,r is the proba-
bility of responding don’t know. The last term adds what
would have been contributed to p,, in a forced-choice task
had the participant decided to throw dice instead of saying
don’t know. This extension makes p,.,, comparable to p.,,
in a forced-choice task. Figure 1C compares psychomet-
ric functions? [p,.,, as a function of 10 - log(d"), N = 2] for
different indecision strategies.

While in blocked designs, the participant will be able to
estimate the value of d' and can thus calculate p,, and
maintain a fixed safety margin J; in randomized designs,
the indecision strategy has to be based on an estimation
d'* of the average of the true value of d'. This corresponds
to maintaining a fixed value of ¢, whatever the actual
value of d', instead of maintaining a fixed value of dor C.
Figure 1C presents both types of psychometric functions.
The gray lines are based on fixed values of J, whereas the
black lines are based on fixed values of c. The leftmost
curve (¢ = d=0) represents the psychometric function for
a forced-choice task. The psychometric functions for
unforced-choice tasks for d = 20% (this corresponds to
C=c-d'=0.85)and c =1 differ little from that for forced-
choice tasks. Larger values of dor ¢ do alter the psycho-
metric function to a greater, but still small, degree. Please
consider that a safety margin of 6= 40% (C = 2.2, right-
most gray curve) implies that the participant decides only
if p,, is larger than 90%.

The effect of comparable shifts in the criterion of a
yes/no task are illustrated in Figure 1D. Considering that
a shift of 1 in the criterion c,,, of a yes/no task can make
all the difference between a reasonable response criterion
(cyjn = 1: asymptotic level for low signal intensities 16%)
and one that would make the simple up—down rule pro-
duce nonsense thresholds (c,,, = 0: asymptotic level 50%),
the small difference between an indecision criterionc =0
and ¢ = 1 is the more astonishing.

What underlies the relative stability of unforced-choice
tasks toward variations of the response criterion? The
main reason is evident from Figure 1A. The area shaded
in white corresponds to the probability of the answer don’t
know. Its size does not correspond directly to a change of
the performance measure p.,, as half of this area is
counted as correct, and half of it as incorrect responses.
The change of the performance measure depends not on
the size of the white area, but only on its asymmetry. If the
white area were symmetric—that is, if it contained as
much to the left as to the right of zero—p,, would be
equal for forced and unforced choices. The decrease in
performance results from the fact that more white area is
to the right than to the left of zero, indicating that the par-
ticipant gives away some of his/her possible performance
by applying this response criterion. The rectangular bor-
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Figure 1. Theory of indecision for two-alternative unforced-choice tasks, assuming Gaussian distributions of equal
variance. (A) Distribution of the quantity e, —e,, (i.e., the difference between the decision axis event perceived in the sig-
nal stimulus and in the noise stimulus) for a signal with d’' = 1 and an effective indecision criterion of ¢ = 1. See the text
for an explanation of the rectangular border shown in the unsure area. (B) Decider operating characteristics ford' =1, 2,
and 3. (C) Psychometric functions ( pec,,) for forced choice (6=c =0, thick black line), for two different values of the safety
margin (8= 20, 40%, thick gray lines) and for two different values of the effective indecision criterion (c =1, 2, thin black
lines). (D) Psychometric functions for a yes/no task, derived from a Gaussian model of signal detection, for four differ-

ent values of the yes/no criterion.

der drawn into the unsure area of Figure 1A shows the
equivalent rectangular area of the actual don’t know area.
The excess of the right-hand (positive) part of the unsure
area over this rectangular area corresponds to the infor-
mation loss owing to the indecision criterion. If the inde-
cision criterion c is halved, this area is decreased by a fac-
tor of about four because of its triangular shape. Hence,
the effect of ¢ on the performance is a second-order effect,
as compared with the first-order effect produced by shift-
ing the yes/no criterion.

Unforced Weighted Up—Down

Adaptive staircase procedures for forced-choice tasks
specify how to adapt the signal level after correct and in-
correct responses (for a review, see Treutwein, 1995). Levitt
(1971) has classified a wide range of adaptive staircase
procedures as transformed up—down methods, with the
signal level adapted after a certain block of responses. In
contrast to these, with the WUD method (Kaernbach,
1991), the signal level is adapted after every single re-
sponse. This method has proven to be superior to trans-
formed up—down methods in simulations (Kaernbach,

1991) and also in experiments (Rammsayer, 1992). In this
section, the WUD rule is modified for unforced-choice tasks.

With the WUD procedure, different step sizes are ap-
plied after correct and incorrect responses. The formula
for the step size S, after correct responses and S;,,.,, after
incorrect responses is derived from the principle that the
net movement should be zero when the response proba-
bility is equal to the target performance at the equilibrium
point peg, of the adaptive run:?

p
Scor |:pequ * Sincor Eﬁl_ pequ) =0, = —

1- pequ .
©)

For instance, for the target performance p,, = 75%, it fol-
lows that S;,.or = 3 * =S¢, It is Obvious that in order to ap-
proach the equilibrium point, S.,, must be negative and
Sincor Must be positive. With unforced-choice tasks, one
must also specify how to adapt the signal level after don’t
know responses. One possibility is to roll a die and choose
an alternative at random. That corresponds closely to what
participants feel is happening when forced to choose. One

Sincor -

=Scor



could, however, eliminate many of the stochastic features
of this process by adapting the signal level in a suitable
way so as to represent the average result of rolling the die
again and again. Depending on the number N of alterna-
tives, the probability of making the correct response by
chance, Pepance: €quals 1/N. Then, the step size S,qr t0 be
applied after a don’t know response should be

Sunsure = pchance |:$cor + (1_ pchance) |:&;incor
-1 N-1
_ﬁscor +Tsincor' (6)

Sunsure €8N NOwW be calculated for any desired target point
of the psychometric function:

pequ —-1/N

Sunsure -
~Scor 1- Pequ
Consider the case where the equilibrium performance peg,
of the adaptive procedure is halfway between chance per-

formance and perfect performance [i.e., peg, = (N + 1)/
2N]. Here we obtain

Sincor - N +1 Sunsure =1
-S N-1" =S

Please note the close relationship between this new adap-
tive procedure, called UWUD henceforth, and the simple
up—down rule of Bekésy (with S,/ =S, = 1). The no but-
ton is renamed don’t know, and the yes response is re-
placed by a forced-choice task. With simple up—down, a
positive response by the participant is taken at face value.
With UWUD, it is cross checked, and in case of a mistake,
a kind of correction for guessing is introduced by taking a
large upward step. Note that for large values of N, this is
not much larger than the level adaptation following don’t
know responses. In other words, don’t know responses are
treated very similar to incorrect responses for high values
of N. If a participant sets his/her criterion so as to avoid
making any mistakes, the resulting run will resemble a
simple up—down run. If the participant does not use the
don’t know response, the UWUD procedure is the same as
the normal WUD procedure for forced-choice tasks.

()

(8)

cor cor

Monte Carlo Simulation

Simulations of adaptive procedures serve two purposes.
The simulation data can be compared with human data. In
this case, one should determine the individual psychome-
tric functions, and the simulated procedural details should
be chosen exactly as in the real experiment (see, e.g.,
Kollmeier, Gilkey, & Sieben, 1988). In other studies, the
simulation simply serves to demonstrate some general ef-
fects (e.g., the dependence on step size or other procedural
parameters). In such simulations, some arbitrary psycho-
metric function is chosen, and the procedural details need
not coincide with experimental settings (and often are
published without any reference to human data; see, e.g.,
Kaernbach, 1991). The advantage of the second approach
is that many different simulations can be carried out, vary-
ing the parameters in fine steps, which simply cannot be
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paralleled with behavioral data. In the present case, there
is the additional difficulty of determining each individu-
al’s psychometric function because it depends on values of
the response criterion under his/her control. Therefore, |
decided to choose the more general approach of basing the
simulations on a theoretical model instead of on individ-
ual data. In the following simulations, the performances
were calculated from a Gaussian model of two-alternative
unforced-choice tasks (see Figure 1). The x-axis (signal
strength) was taken to be a logarithmic function of d’, and
it is expressed in decibels (10 times base-10 logarithm;
compare also x-axis of Figure 1C and note 1).

For a simulation of unforced-choice procedures, it must
be specified in what way the indecision criterion varies as
a function of the signal strength. If the participant had full
knowledge of the effective distributions at every single
trial, the optimal indecision strategy would be to decide if
and only if p.,, > 1/N + J, where the value of p,, is calcu-
lated with the true value of d'. Let us, for illustration pur-
poses, consider the case N = 2. The optimal strategy with
a constant value for dwould be equivalent to maintaining
a stable indecision criterion C =c - d' (i.e., the effective in-
decision criterion ¢ would have to be larger for small values
of d"). Consider, for instance, the case of d' = 0: In this
case, pPgor Will never be greater than 1/N, however large
|e; —e,| may be, and the requirement that p,,, > 1/N + dis
equivalent to an infinite value for the indecision crite-
rion c.

If, on the other hand, the participant does not have trial-
by-trial knowledge of d’, he/she would have to estimate an
average sensitivity value d'* and base the indecision strat-
egy on the value of p,,, calculated with d'* instead of d'.
In the case of N = 2, this is equivalent to maintaining a sta-
ble indecision criterion ¢ whatever the actual value of d’
may be. Given feedback, participants in adaptive proce-
dures will probably show some but not perfect knowledge
ofd".

The following simulations tested both types of indeci-
sion strategies. For different values of 4, we simulated
100,000 runs of a UWUD procedure, simulating either an
optimal indecision strategy (i.e., taking into account the
true value of d') or setting the internal representation d'*
to be equal to one, which should represent an average es-
timate of d' at threshold. The step width of the adaptive
procedure (Sysure = —Scor) Was 1 dB. Each run began at a
random position within the interval [15,16] dB, where the
performance was quite close to one.3 A reversal happens
when a response leading to a downward movement (cor-
rect) is followed by a response leading to an upward move-
ment (incorrect or don’t know), or vice versa. Each run
was terminated 20 trials after the fourth reversal. The
threshold estimate was the mean of these last 20 trials. The
termination criterion was trials, not reversals, in order bet-
ter to compare runs with different criteria that result in re-
versals after different average numbers of trials.

Figure 2A shows the statistical error as a function of the
systematic error for the case N = 2. The statistical error
was estimated as the standard deviation of the threshold
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Figure 2. Simulation results for unforced weighted up—down runs. (A) N = 2: The sta-
tistical error is shown as a function of the systematic error for various values of d(see an-
notations). The total error corresponds to the distance from the origin. The thick black
line corresponds to the optimal indecision strategy based on a trial-by-trial knowledge of
d”. The thick gray line was calculated with a fixed internal representation d* of d’. The
thin black line was calculated with the internal representation d"* taken randomly from
the interval [1,2]. (B) Number of incorrect responses for the same runs as in (A) as a func-
tion of the number of unsure responses. (C, D) The same simulations as in (A) for N =3

and N =4.

estimates resulting from these 100,000 runs. This measure
reflects the statistical variations of the single threshold es-
timates around the average threshold estimate. The sys-
tematic error was estimated by the absolute difference be-
tween the average threshold estimate and the true
threshold, which was assumed to be at that point where a
forced-choice procedure would give 75% correct re-
sponses (d’ = 0.954).

The solid black line corresponds to the optimal indeci-
sion strategy, with the participant’s having full trial-by-
trial knowledge of d' (d'* = d'), for different values of
(see annotations). The statistical error decreases as J in-
creases. This is a consequence of the tendency toward a
deterministic behavior at low signal intensities. The sys-
tematic error increases as o increases. This arises as fol-
lows. The forced-choice procedure, which is equivalent to

unforced-choice with =0, will on average find the true
threshold value quite precisely. As the number of don’t
know responses increases, the effective psychometric func-
tion shifts toward higher signal intensities (compare Fig-
ure 1C). The adaptive procedure finds the target perfor-
mance for this shifted psychometric function and, hence,
a difference (the systematic error) exists from the target
performance of the original psychometric function. It is
important to note, however, that the systematic error is re-
ally small for 6< 10%.

Whereas the direction of the systematic error is known,
the statistical error may add itself in either direction—
enlarging, reducing, or even inverting the systematic error.
The average size of the resulting total error is the orthog-
onal sum (i.e., the square root of the sum of the squared
values) of the statistical and the systematic error and equals



the distance of each data point from the origin (0,0) of the
graph.4 This distance decreases with increasing dfor mod-
erate values of J, reaches a local minimum at é = 20%,
and then begins to increase, although remaining smaller
than the value for forced choice (6= 0) up to 6=36%. Thus,
over a wide range of possible response strategies, the
UWUD procedure produces fewer errors than does the
normal WUD procedure. One might even argue that the
statistical error is more important than the total error,
since quite often it is not the absolute threshold value that
is important but a change in threshold resulting from a
variation of one of the experimental parameters. The sta-
tistical error with UWUD runs is smaller than that with
normal WUD runs for all values of .

The gray line shows simulation data for the case in
which the participant does not have trial-by-trial knowl-
edge of d'. In this case, the indecision strategy is again
based on the calculation of p,,, where the internal repre-
sentation d'* was set equal to one. It should be noted that
any other value d'* T would have yielded the same curve:
In the case of N = 2, it can be followed from Equation 3
that for any other value d'* T there exists a value o' that
would yield the same decisions as the original parameters
d'* and o. Instead of adding annotations of & values
(which would be relevant only for d'* = 1), the ¢ = 1 po-
sition of the curve is indicated. With a constant d"* the sta-
tistical error decreases, but not to the same degree as with
the optimal indecision strategy d'* = d'. This shows that
a knowledge of the signal strength (i.e., of d") helps the
participant to decide when it would be better not to decide.
There is, however, still a large range of ¢ values that lead
to total errors that are smaller than for forced-choice tasks.
The sweat point is at ¢ = 0.75, and up to ¢ = 1.2, the total
error is smaller than for ¢ = 0.

One important argument against reintroducing a crite-
rion is that it may vary over the course of the experiment.
The purpose of the next simulation was to determine the
degree to which variability in the criterion increases the
statistical error. It was assumed that the participant has no
trial-by-trial knowledge of d'. The decision when to de-
cide does then depend on both the internal representation
d'* and the safety margin d(or the indecision criterion C),
and both can vary. It is, however, sufficient to vary one of
them, since a change in d"* has exactly the same effect as
a judiciously chosen change in dor C. Whereas in the pre-
vious simulation d'* was set to one, it was now taken ran-
domly from the interval [1,2]. This corresponds to vary-
ing the effective indecision criterion ¢ by a factor of two.
The randomization was done once per run. Note that, for
a given range of criteria, randomizing the criterion within
runs produces less variability of the threshold estimates
than does randomizing between runs, because the effec-
tive average criterion per run varies less. Hence, between-
runs randomization represents the most severe test possi-
ble of the stability of the UWUD procedure against
variability of the response criterion.

The thin black line in Figure 2A shows the results. In
spite of the randomization of the indecision criterion, the
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statistical error still decreases with increasing &. For small
values of drandomization does not much affect the statis-
tical error, whereas for high values of 9, the statistical
error is not so small as without randomization. The total
error decreases with increasing 4, up to a local minimum
at & = 20%, and then increases again. It remains smaller
than the value for forced-choice, up to é = 33%. Again,
and despite the variability of the response criterion, the
total error of UWUD is smaller than or comparable with
that of WUD over a wide range of response criteria, and if
one is interested in the statistical error, UWUD is superior
for all tested values.

Figure 2B shows the error rate as a function of the un-
sure responses during the last 20 trials of each run. The
number of errors decreases monotonically with increas-
ing J, and at the same time, the number of don’t know re-
sponses increases. For & = 15%, the fraction of errors is
halved, as compared with forced choice (c = 0). Especially
in situations with feedback, this may be expected to im-
prove the participants’ comfort because it reduces the
amount of negative feedback.

The reversal number during the last 20 trials increases
with increasing dfrom about 7.1 (6= 0%) to 8.9 (8= 10%)
and reaches, finally, 10.5 (0 = 49%). This is evidence of
the transition from normal WUD to simple up—down,
which is known to produce more reversals. The effect, al-
though small, may influence the run length (in reversals)
set by the experimenter. The effect of the step size on the
reversal number cannot be assessed from the present sim-
ulation data because the step size was not varied.

Figures 2C and 2D show the result of simulations of
UWUD runs for N-alternative tasks with N =3 and N = 4.
Again, Equations 1 and 2 were used to calculate the prob-
ability p,, for a correct response, with the virtual parti-
cipant refusing to choose among the N alternatives if
Peor < 1N + 4. Data sets with optimal indecision strategies
(d'*=d") based on trial-by-trial knowledge of d', with in-
decision strategies based on a single fixed internal repre-
sentation d'* = 1, and with a randomized internal repre-
sentation d'* taken from the interval [1,2] are presented in
the same way as in Figure 2A. All simulation results show
clearly that there is a reduction of the statistical error and
the total error owing to the inclusion of the don’t know re-
sponse type. The advantage is, however, not as dramatic as
for N = 2. Again, the optimal indecision strategies produce
smaller statistical errors for comparable systematic errors
than do the suboptimal strategies based on fixed values of
d'*. With increasing N, the statistical error gets smaller, as
would be expected. The value of dat the sweat point with
the minimal total error is about 20% for all values of N.

Behavioral Data

Simulation data may prove the apparent superiority of
a method only to discover that it, in fact, fails in real expe-
riments. The likely reason for this is that real participants
behave differently than simulated participants. They may
have different psychometric functions, they may like or
dislike certain aspects of a method, and certain aspects of
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the procedures, such as the systematic or apparently ran-
dom succession of signal intensities, may help or hamper
their ability to concentrate on their task. Therefore, the
real test of a psychophysical procedure is comparing it
with established procedures in a behavioral experiment.
Six paid psychology students (4 females, 2 males; age
range, 20-22) without any prior experience in adaptive
psychophysical procedures participated in the experiment.
Two performed in 120 runs and 4 in 360 runs of three dif-
ferent procedures run in cyclic order: simple up—down,
weighted up—down, and unforced weighted up—down. The
task was to detect a brief sinusoid of 1000 Hz with a
Gaussian envelope (o = 150 msec) centered in 800 msec
of white noise with 100-msec ramps. For simple up—down
runs, one interval contained the sinusoid, and the partici-
pant was asked whether he/she had heard it. For WUD and
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UWUD, two intervals, separated by 200 msec, were pre-
sented; just one contained the sinusoid, and the other con-
sisted of noise alone. The runs began at a random position
between 12 and 24 dB, where 0 dB was defined as equal
rms power within a third-octave band centered around
1000 Hz. The initial step size was 4 dB. The step size was
halved after the second and the fourth reversals so that the
final step size was 1 dB. A run lasted until 16 reversals
had occurred. With the two-interval procedures, feedback
was given of incorrect responses.

Given the similarity of the procedures, special care was
taken to ensure that the participants recognized the exis-
tence of the additional response possibility with unforced-
choice tasks. In particular, prior to each unforced-choice
run, the participant was required to press the don’t know
button to initiate the run. After each unforced-choice run,
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Figure 3. Results of a behavioral comparison of the simple up—down, forced, and unforced weighted up—down proce-
dures. (A) Statistical error averaged across all 6 participants, as a function of the average run length in trials. (B, C) The
same for two clusters of participants: those that could not cope with the simple up—down procedure (B), and those that
could (C). (D) Data of 4 participants after a substantial amount of training.



the total number of incorrect and unsure responses was
provided, and when the ratio of these two quantities ex-
ceeded 2.5 in either direction, the participant was encour-
aged to make either greater or less use of the don’t know
button. Our intention was to aid the participants to main-
tain stable criteria. Such a message occurred on only 6%
of the runs, 5% due to too few unsure responses, and 1%
due to too many of them.

One threshold estimate was calculated by averaging all
intensities following the second reversal, up to the inten-
sity following the 4th reversal.5 Six further estimates were
based on all intensities following the 4th reversal, up to
the intensity following the 6th, 8th, ..., 16th reversals. So
each single run gave rise to seven different threshold esti-
mates. Additionally, the number of trials needed to reach
the 4th, 6th, ... 16th reversals was determined.

Figure 3A shows the statistical errors (i.e., the standard
deviation of the threshold estimates) calculated over the
first 120 runs (40 runs per method), as a function of the
average trial number. It is given separately for the three dif-
ferent adaptive procedures and for the seven different run
lengths. As is clear, both weighted up—down procedures
proved to be far more efficient than the simple up—down pro-
cedure, reaching smaller statistical errors for the same trial
numbers. UWUD is a little bit more efficient than WUD.

The poor results for the simple up—down deserve fur-
ther analysis. From the single-participant data, it became
obvious that the 6 participants could be clustered into two
groups of 3 each, with one group having had problems in
achieving stable threshold estimates with the simple up—
down method (Cluster A), and the other group coping well
with this method (Cluster B).

Figure 3B shows the data from Cluster A. The difference
in efficiency between UWUD and WUD, as well as the
poor performance for simple up—down, is most prominent
for Cluster A. Figure 3C shows the data averaged over
Cluster B. In this case, the simple up—down procedure gen-
erated threshold estimates that are comparable to those
generated by the two weighted up—down procedures. For
short runs, simple up—down was sometimes even superior
to weighted up—down. It is interesting to notice that, for
both clusters, the variability of the threshold estimates did
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not decrease for long runs as much as it did for the weighted
up—down procedures. This could have resulted from the
participants’ inability to respond stochastically indepen-
dent from their earlier responses. The participants inferred
that the stimulus was always present and that its intensity
was reduced after a yes response and was increased after
a no response. Stochastic response behavior should have
appeared to them as illogical and inconsistent. A possible
strategy was for the participants to respond alternately
with yes and no, once the threshold region had been
reached. This would then prevent further reduction of the
threshold variability.

To analyze how further training might modify these re-
sults, 4 participants (2 from each cluster) were asked to
continue until they had reached 360 runs (120 per method).
Figure 3D shows the statistical errors calculated over the
last 180 runs. The earlier difficulties with the simple up-
down procedure disappeared, and the data of Figure 3D
look very similar to those of Figure 3C. Again, for short
runs, simple up—down produced fewer statistical errors
than did the weighted up—down procedures, but it cannot
be reduced further by using long runs. Comparing the two
weighted up—down procedures, the unforced version shows
a slight advantage in efficiency.

Some people may view the systematic error as an im-
portant quantity by itself, whereas others may not. At least
its variations are important in that they determine the in-
terparticipant statistical error. To have evaluated the sys-
tematic error directly, the psychometric function would
have had to be determined for each participant. In order to
avoid temporal effects, this should have been done inter-
leaved with the adaptive runs. This was not done. Instead,
the systematic error was estimated by comparing the thresh-
olds determined using the different adaptive procedures.
From all tested procedures, the only criterion-free one was
the WUD procedure. Therefore, all data are referenced to
the results of this procedure. Table 1 shows the mean and
the standard deviations (across participants) of the thresh-
old estimates for simple up—down and UWUD, with
WUD serving as reference. Four rows correspond to the
data presented in Figures 3A-D. The data on the system-
atic errors (Table 1) parallel those on the statistical errors

Table 1
Average Threshold Estimates (in Decibels) Obtained With Two Procedures, With the Values Obtained With
the Third One, the Criterion-Free Forced Weighted Up—Down Procedure, Serving as Reference

Simple Up-Down Minus Unforced Weighted Up—-Down Minus F test,
Forced Weighted Up—Down Forced Weighted Up—Down Significantif f >F (n—1,n—1) a
First 120 runs (40 per method) for all participants (n = 6)

-34%55 0.03+0.5 F(5,5) =10.97, f = 11.26** .01
First 120 runs for Cluster A (bad simple up—down performers, n = 3)

-6.9+6.1 -0.05+0.2 F(2,2) =19.00, f = 26.27* .05
First 120 runs for Cluster B (good simple up—down performers, n = 3)

01+08 01+0.7 F(2,2) =19.00, f=1.18 .05

Last 180 runs for remaining participants (n = 4)

-03+24 0.09+0.3 F(3,3)=9.28, f=9.21 .05
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(Figure 3A-D): Especially during the first 120 runs, Clus-
ter A shows, on average, large systematic errors and a large
variation of these systematic errors for the simple up—down
procedure. The participants of Cluster B show compara-
ble systematic errors for simple up—down and UWUD.
After additional training (last line of Table 1), the aver-
ages of the systematic errors for these two procedures ap-
proach each other, whereas the variability of the systematic
error for simple up—down data remains high. Due to the
small number of participants in the last phase of the ex-
periment (n = 4), the difference of the variance of the sys-
tematic error across trained participants for the two proce-
dures misses significance by a narrow margin (see F test
in Table 1). Especially in comparing different groups of par-
ticipants, the simple up—down procedure could introduce

systematic errors. In contrast, the systematic errors of the
UWUD procedure are rather small, indicating a low value
of the indecision criterion employed by the participants.
In order to determine the indecision strategy applied by
the participants, the data were compared with the simula-
tion data. Figure 4A shows the distribution of the numbers
of incorrect and unsure responses for runs that simulated
as precisely as possible the experimental details (step size
reduction, termination after 16 reversals). The indecision
strategy (0=10%, d'* =10 ¢ =0.4) was chosen in order
to mimic the experimental data shown in Figure 4B. The
two solid lines in Figure 4B represent the boundaries be-
yond which participants were encouraged to make greater
or less use of the don’t know button. Ninety-four percent
of the runs lay inside these boundaries, with the main part
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Figure 4. Distribution of runs as a function of the number of unsure and in-
correct responses. (A) Simulation results for §=10% andd™* =1 (c=0.4). (B) Be-
havioral data. The solid lines represent the borderlines beyond which a specific
encouragement was given. (C) Comparison of simulation results and empirical
data. Here, the response types were evaluated separately for the below-threshold
and above-threshold parts of the runs. Thick gray lines show simulation results
for optimal indecision strategies (left line: d=5%, right line: §=10%b) and thick
black lines for strategies using an average value for d* (same values for 9§,
d* = 1). The experimental results are shown with a thin black line with circles.



of the distribution concentrated much more tightly than
the total area defined by the boundaries. This means that,
even without any attempt to stabilize the criterion, the par-
ticipants must have chosen their response criteria in a sta-
ble and reproducible manner. The distribution of the ex-
perimental runs is constrained to a smaller region than that
of the simulated runs, indicating that the participants mon-
itored their response behavior and avoided excesses of ei-
ther response type by adjusting their response criteria. If,
for instance, in a certain run, a large number of incorrect
responses occurred, the participant enlarged the indeci-
sion criterion and so was more prone to press the don’t
know button. The value of the indecision criterion is rather
small, and at these values, the simulations predict a rather
small systematic error (see Figure 2A), quite in line with
the data presented in Table 1.

Optimal indecision strategies based on trial-by-trial
knowledge of d' show a different pattern of the use of the
don’t know response than do indecision strategies based
on a fixed internal representation d'*. Figure 4C shows
the number of incorrect responses as a function of the num-
ber of the don’t know responses for the above-threshold
and the below-threshold parts of adaptive runs. The two
thick gray lines show simulation data for optimal indeci-
sion strategies (d'* = d'). Each line corresponds to a set
of data for a certain value of & (5% or 10%), separated in
responses given below the threshold (upper right-hand
point) and above the threshold (lower left-hand point). The
two thick black lines show the same data in the case of a
fixed internal representation d'* = 1. Obviously the opti-
mal indecider makes more use of the don’t know response
in the below-threshold region, and less use of it in the above-
threshold region. The thin black line with circles shows the
experimental data. They are close to the simulation data
for a fixed internal representation d'*, but with a slightly
smaller slope. This could be interpreted as demonstrating
that the participants could adapt their indecision strategy
to the actual signal strength to a certain degree.

Introspective observations of the participants indicated
that they felt most comfortable in the unforced-choice tasks.
Under forced-choice tasks, they complained about the need
to make a choice even when they felt they did not perceive
anything. With yes/no tasks, they complained about “not
knowing where to stop” (i.e., about the need to maintain a
stable decision criterion). Unforced-choice tasks gave them
the response possibilities they needed: the possibility when
they did not perceive anything of saying so, and the possi-
bility to control themselves if they thought they had got the
signal.

Conclusions

In summary, it was demonstrated both in Monte Carlo
simulations and in a behavioral study that adaptive proce-
dures can be based on unforced-choice tasks without los-
ing reliability. And a slight gain in efficiency is actually
achieved. A major argument for using unforced-choice
tasks is the resulting greater comfort of the participants.
This fact is especially important for experiments with naive
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and inexperienced participants and/or participants in clin-
ical settings. Experienced participants yield reliable re-
sults in yes/no tasks once they have learned to maintain a
stable yes/no criterion, but that does not reduce the vari-
ability due to different criteria among participants.

Normal WUD runs produce slightly more reversals in
a fixed number of trials than do transformed up—down runs
(about 20%; see Kaernbach, 1991, Figure 2), and UWUD
runs add another 20% to the reversal count. In order to ob-
tain a comparable run length, it may be advisable to in-
crease the number of reversals requested for run termination.

The behavioral data presented in Figure 4B show that
the participants did not excessively use of the don’t know
response. On the contrary, the results might be improved
by directly encouraging greater use of the don’t know but-
ton (e.g., by suggesting this possibility at every incorrect
response). The simulation data presented in Figure 2 seem
to recommend values for ¢ around 0.65, roughly twice the
values actually chosen by the participants. Were they more
optimal, the don’t know response would occur more than
twice as often as incorrect responses.

While the simulations tested also N-alternative tasks for
N > 2, the behavioral test was done with two-alternative
tasks only. Given the similarity of the outcome of the sim-
ulations for N=2and N > 2, it can be assumed that UWUD
is behaviorally superior to WUD also for N-alternative
tasks with more than two alternatives.
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NOTES

1. Psychometric functions resulting from experimental data are often
shown as a logarithmic function of intensity, allowing to assess perfor-
mance and d' for a given intensity. For small intensities it is reasonable
to assume a linear relation between log(intensity) and log(d'). For mod-
eling purposes, it is then sufficient and more general to plot the psycho-
metric function as a logarithmic function of d' instead of intensity.

2. Please note that in Kaernbach (1991) there is a typographical error
in Equation 1 and in the following line: The subscripts up and down were
mistakenly interchanged. Also in Kaernbach, the step sizes were taken
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as absolute values, whereas in the present paper, they are considered to
be signed quantities.

3. Starting at higher values, say 21.3, would lead to quasi-deterministic
run-downs, passing the [15,16] interval, in this case at 15.3. It is thus
sufficient to randomize across the range of one step size.

4. This definition of the total error is equivalent to referring the vari-
ance to the true value instead of to the mean. Let o2, denote the mean
of the quadratic deviations of the threshold estimates from the mean es-
timate: 0%, =< (x — <x>)2>. Let 02, denote the squared difference be-
tween the mean <x> and the true value x,. Then the squared total error
oy = Uszys + 0%y is equal to < (x — x;)2>.

5. Unpublished simulations by Neutzler (1999) tested the best way to
analyze data obtained by the simple up—down method. They exhibited a

slight advantage for averaging all intensities, as compared with averag-
ing only the intensities of the reversal points. Moreover, if the discard
was Ny and the total reversal number was N, it proved advantageous to
begin averaging at the intensity following reversal Ny (i.e., excluding the
intensity at reversal point N from the analysis) and to include the inten-
sity following to reversal N, (i.e., the one that would have been tested
next) into the analysis.
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